63 research outputs found
Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT
An outstanding problem in cancer therapy is the battle against treatment-resistant disease. This is especially true for ovarian cancer, where the majority of patients eventually succumb to treatment-resistant metastatic carcinomatosis. Limited perfusion and diffusion, acidosis, and hypoxia play major roles in the development of resistance to the majority of front-line therapeutic regimens. To overcome these limitations and eliminate otherwise spared cancer cells, we utilized the cationic photosensitizer EtNBS to treat hypoxic regions deep inside in vitro 3D models of metastatic ovarian cancer. Unlike standard regimens that fail to penetrate beyond ∼150 µm, EtNBS was found to not only penetrate throughout the entirety of large (>200 µm) avascular nodules, but also concentrate into the nodules' acidic and hypoxic cores. Photodynamic therapy with EtNBS was observed to be highly effective against these hypoxic regions even at low therapeutic doses, and was capable of destroying both normoxic and hypoxic regions at higher treatment levels. Imaging studies utilizing multiphoton and confocal microscopies, as well as time-lapse optical coherence tomography (TL-OCT), revealed an inside-out pattern of cell death, with apoptosis being the primary mechanism of cell killing. Critically, EtNBS-based photodynamic therapy was found to be effective against the model tumor nodules even under severe hypoxia. The inherent ability of EtNBS photodynamic therapy to impart cytotoxicity across a wide range of tumoral oxygenation levels indicates its potential to eliminate treatment-resistant cell populations
Enhancement of the activity of phenoxodiol by cisplatin in prostate cancer cells
Phenoxodiol is a novel isoflav-3-ene, currently undergoing clinical trials, that has a broad in vitro activity against a number of human cancer cell lines. Phenoxodiol alone inhibited DU145 and PC3 in a dose- and time-dependent manner with IC50 values of 8±1 and 38±9 μM, respectively. The combination of phenoxodiol and cisplatin was synergistic in DU145, and additive in PC3, as assessed by the Chou–Talalay method. Carboplatin was also synergistic in combination with phenoxodiol in DU145 cells. The activity of the phenoxodiol and cisplatin combination was confirmed in vivo using a DU145 xenograft model in nude mice. Pharmacokinetic data from these mice suggest that the mechanism of synergy may occur through a pharmacodynamic mechanism. An intracellular cisplatin accumulation assay showed a 35% (P<0.05) increase in the uptake of cisplatin when it was combined in a ratio of 1 μM: 5 μM phenoxodiol, resulting in a 300% (P<0.05) increase in DNA adducts. Taken together, our results suggest that phenoxodiol has interesting properties that make combination therapy with cisplatin or carboplatin appealing
Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal
Mounting evidence suggests that there is frequently considerable variation in the risk of the outcome of interest in clinical trial populations. These differences in risk will often cause clinically important heterogeneity in treatment effects (HTE) across the trial population, such that the balance between treatment risks and benefits may differ substantially between large identifiable patient subgroups; the "average" benefit observed in the summary result may even be non-representative of the treatment effect for a typical patient in the trial. Conventional subgroup analyses, which examine whether specific patient characteristics modify the effects of treatment, are usually unable to detect even large variations in treatment benefit (and harm) across risk groups because they do not account for the fact that patients have multiple characteristics simultaneously that affect the likelihood of treatment benefit. Based upon recent evidence on optimal statistical approaches to assessing HTE, we propose a framework that prioritizes the analysis and reporting of multivariate risk-based HTE and suggests that other subgroup analyses should be explicitly labeled either as primary subgroup analyses (well-motivated by prior evidence and intended to produce clinically actionable results) or secondary (exploratory) subgroup analyses (performed to inform future research). A standardized and transparent approach to HTE assessment and reporting could substantially improve clinical trial utility and interpretability
Drug discovery in advanced prostate cancer: translating biology into therapy.
Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs
- …