17 research outputs found
Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms
Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected
Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells
BACKGROUND: Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. METHODS: We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. RESULTS: We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines. CONCLUSION: We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially responsible for the complexity of HGF responses and met expression reported in the literature
Stage T1c prostate cancer: defining the appropriate staging evaluation and the role for pelvic lymphadenectomy
A good staging system should be able to accurately reflect the natural history of a malignant disease, to express the extent of the disease at the time of diagnosis, and stratify patients in prognostically distinctive groups. The staging system for prostate cancer, as it is today, fails to fulfill these requirements. Approximately one third of the patients who undergo surgery for complete excision of prostate cancer in fact do not have a localize disease. The incidence of tumor at the inked margin may reach 30% for T1 stage and up to 60% for clinical T2b prostate cancer according to comparision with pathologic examination of resected specimen. Several concepts have been recently proposed as a means of improving the accuracy of the available staging system. In this paper, we review current aspects of clinical and pathological staging of prostate cancer, and the importance of these new concepts on the early stages of prostate cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47057/1/345_2005_Article_BF01300182.pd