428 research outputs found

    Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells

    Get PDF
    One of the major factors that limits the treatment effectiveness for gliomas is the presence of the blood–brain barrier (BBB) which protects infiltrating glioma cells from the effects of anti-cancer agents. Circulating monocytes/macrophages (Ma) have a natural ability to traverse the intact and compromised BBB and loaded with anti cancer agents could be used as vectors to target tumors and surrounding tumor infiltrated tissue. Nanoshells (NS) are composed of a dielectric core (silica) coated with an ultrathin gold layer which converts absorbed near-infrared light (NIR) to heat with an extremely high efficacy and stability. We have investigated the effects of exposure to laser NIR on multicell human glioma spheroids infiltrated with empty (containing no nanoshells) or nanoshell loaded macrophages. Our results demonstrated that; (1) macrophages could efficiently take up bare or coated (PEGylated) gold NS: (2) NS loaded macrophages infiltrated into glioma spheroids to the same or, in some cases, to a greater degree than empty Ma; (3) NIR laser irradiation of spheroids incorporating NS loaded macrophages resulted in complete growth inhibition in an irradiance dependent manner, and (4) spheroids infiltrated with empty macrophages had growth curves identical to untreated control cultures. The results of this study provide proof of concept for the use of macrophages as a delivery vector of NS into gliomas for photothermal ablation and open the possibility of developing such regimens for patient treatment

    Th17 cell master transcription factor RORC2 regulates HIV-1 gene expression and viral outgrowth

    Get PDF
    Among CD4+ T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation. Thus, Th17 cells are key players in HIV pathogenesis and viral persistence. It is, however, unclear why these cells are highly susceptible to HIV-1 infection. Th17 cell differentiation depends on the expression of the master transcriptional regulator RORC2, a retinoic acid-related nuclear hormone receptor that regulates specific transcriptional programs by binding to promoter/enhancer DNA. Here, we report that RORC2 is a key host cofactor for HIV replication in Th17 cells. We found that specific inhibitors that bind to the RORC2 ligand-binding domain reduced HIV replication in CD4+ T cells. The depletion of RORC2 inhibited HIV-1 infection, whereas its overexpression enhanced it. RORC2 was also found to promote HIV-1 gene expression by binding to the nuclear receptor responsive element in the HIV-1 long terminal repeats (LTR). In treated HIV-1 patients, RORC2+ CD4 T cells contained more proviral DNA than RORC2- cells. Pharmacological inhibition of RORC2 potently reduced HIV-1 outgrowth in CD4+ T cells from antiretroviral-treated patients. Altogether, these results provide an explanation as to why Th17 cells are highly susceptible to HIV-1 infection and suggest that RORC2 may be a cell-specific target for HIV-1 therapy

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Use of a Cybex NORM dynamometer to assess muscle function in patients with thoracic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cachexia-anorexia syndrome impacts on patients' physical independence and quality of life. New treatments are required and need to be evaluated using acceptable and reliable outcome measures, e.g. the assessment of muscle function. The aims of this study were to: (i) examine the acceptability and reliability of the Cybex NORM dynamometer to assess muscle function in people with non-small cell lung cancer or mesothelioma; (ii) compare muscle function in this group with healthy volunteers and; (iii) explore changes in muscle function over one month.</p> <p>Methods</p> <p>The test consisted of 25 repetitions of isokinetic knee flexion and extension at maximal effort while seated on a Cybex NORM dynamometer. Strength and endurance for the quadriceps and hamstrings were assessed as peak torque and total work and an endurance ratio respectively. Thirteen patients and 26 volunteers completed the test on three separate visits. Acceptability was assessed by questionnaire, reliability by intraclass correlation coefficients (ICC) and tests of difference compared outcomes between and within groups.</p> <p>Results</p> <p>All subjects found the test acceptable. Peak torque and work done were reliable measures (ICC >0.80), but the endurance ratio was not. Muscle function did not differ significantly between the patient and a matched volunteer group or in either group when repeated after one month.</p> <p>Conclusion</p> <p>For patients with non-small cell lung cancer or mesothelioma, the Cybex NORM dynamometer provides an acceptable and reliable method of assessing muscle strength and work done. Muscle function appears to be relatively well preserved in this group and it appears feasible to explore interventions which aim to maintain or even improve this.</p

    Principal component and factor analytic models in international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries. This gives rise to several problems such as over-parameterized models and increased sampling variances, if genetic (co)variance matrices are considered to be unstructured.</p> <p>Methods</p> <p>Principal component (PC) and factor analytic (FA) models allow highly parsimonious representations of the (co)variance matrix compared to the standard multi-trait model and have, therefore, attracted considerable interest for their potential to ease the burden of the estimation process for multiple-trait across country evaluation (MACE). This study evaluated the utility of PC and FA models to estimate variance components and to predict breeding values for MACE for protein yield. This was tested using a dataset comprising Holstein bull evaluations obtained in 2007 from 25 countries.</p> <p>Results</p> <p>In total, 19 principal components or nine factors were needed to explain the genetic variation in the test dataset. Estimates of the genetic parameters under the optimal fit were almost identical for the two approaches. Furthermore, the results were in a good agreement with those obtained from the full rank model and with those provided by Interbull. The estimation time was shortest for models fitting the optimal number of parameters and prolonged when under- or over-parameterized models were applied. Correlations between estimated breeding values (EBV) from the PC19 and PC25 were unity. With few exceptions, correlations between EBV obtained using FA and PC approaches under the optimal fit were ≄ 0.99. For both approaches, EBV correlations decreased when the optimal model and models fitting too few parameters were compared.</p> <p>Conclusions</p> <p>Genetic parameters from the PC and FA approaches were very similar when the optimal number of principal components or factors was fitted. Over-fitting increased estimation time and standard errors of the estimates but did not affect the estimates of genetic correlations or the predictions of breeding values, whereas fitting too few parameters affected bull rankings in different countries.</p

    Principal component approach in variance component estimation for international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model.</p> <p>Methods</p> <p>This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC) and the so-called bottom-up REML approach (bottom-up PC), in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (co)variance matrix.</p> <p>Results</p> <p>Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (co)variance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in bias, but increased standard errors of the estimates and notably the computing time.</p> <p>Conclusions</p> <p>In terms of estimation's accuracy, both principal component approaches performed equally well and permitted the use of more parsimonious models through random regression MACE. The advantage of the bottom-up PC approach is that it does not need any previous knowledge on the rank. However, with a predetermined rank, the direct PC approach needs less computing time than the bottom-up PC.</p

    Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes

    Get PDF
    Aims/hypothesis This study aimed to examine the relationship between average glucose levels, assessed by continuous glucose monitoring (CGM), and HbA1c levels in pregnant women with diabetes to determine whether calculations of standard estimated average glucose (eAG) levels from HbA1c measurements are applicable to pregnant women with diabetes. Methods CGM data from 117 pregnant women (89 women with type 1 diabetes; 28 women with type 2 diabetes) were analysed. Average glucose levels were calculated from 5–7 day CGM profiles (mean 1275 glucose values per profile) and paired with a corresponding (±1 week) HbA1c measure. In total, 688 average glucose–HbA1c pairs were obtained across pregnancy (mean six pairs per participant). Average glucose level was used as the dependent variable in a regression model. Covariates were gestational week, study centre and HbA1c. Results There was a strong association between HbA1c and average glucose values in pregnancy (coefficient 0.67 [95% CI 0.57, 0.78]), i.e. a 1% (11 mmol/mol) difference in HbA1c corresponded to a 0.67 mmol/l difference in average glucose. The random effects model that included gestational week as a curvilinear (quadratic) covariate fitted best, allowing calculation of a pregnancy-specific eAG (PeAG). This showed that an HbA1c of 8.0% (64 mmol/mol) gave a PeAG of 7.4–7.7 mmol/l (depending on gestational week), compared with a standard eAG of 10.2 mmol/l. The PeAG associated with maintaining an HbA1c level of 6.0% (42 mmol/mol) during pregnancy was between 6.4 and 6.7 mmol/l, depending on gestational week. Conclusions/interpretation The HbA1c–average glucose relationship is altered by pregnancy. Routinely generated standard eAG values do not account for this difference between pregnant and non-pregnant individuals and, thus, should not be used during pregnancy. Instead, the PeAG values deduced in the current study are recommended for antenatal clinical care

    A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    Get PDF
    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand, dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary substrate-binding site (S1) towards the cytoplasm

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study

    Get PDF
    BACKGROUND: Chorioamnionitis is a common underlying cause of preterm birth (PTB). It is hypothesised that polymorphisms in immunoregulatory genes influence the host response to infection and subsequent preterm birth. The relationship between histologic chorioamnionitis and 22 single nucleotide polymorphisms in 11 immunoregulatory genes was examined in a case-control study. METHODS: Placentas of 181 Caucasoid women with spontaneous PTB prior to 35 weeks were examined for histologic chorioamnionitis. Polymorphisms in genes IL1A, IL1B, IL1RN, IL1R1, tumour necrosis factor (TNF), IL4, IL6, IL10, transforming growth factor beta-1 (TGFB1), Fas (TNFRSF6), and mannose-binding lectin (MBL2) were genotyped by polymerase chain reaction and sequence specific primers. Multivariable logistic regression including demographic and genetic variables and Kaplan-Meier survival analyses of genotype frequencies and pregnancy outcome were performed. RESULTS: Sixty-nine (34%) women had histologic evidence of acute chorioamnionitis. Carriage of the IL10-1082A/-819T/592A (ATA) haplotype [Multivariable Odds ratio (MOR) 1.9, P = 0.05] and MBL2 codon 54Asp allele (MOR 2.0, P = 0.04), were positively associated with chorioamnionitis, while the TNFRSF6-1377A/-670G (AG) haplotype (MOR 0.4, P = 0.03) and homozygosity for TGFB1-800G/509T (GT) haplotype (MOR 0.2, P = 0.04) were negatively associated. CONCLUSION: These findings demonstrate that polymorphisms in immunoregulatory genes IL10, MBL2, TNFRSF6 and TGFB1 may influence susceptibility to chorioamnionitis
    • 

    corecore