240 research outputs found

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Molecules cooled below the Doppler limit

    Get PDF
    The ability to cool atoms below the Doppler limit -- the minimum temperature reachable by Doppler cooling -- has been essential to most experiments with quantum degenerate gases, optical lattices and atomic fountains, among many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A molecular magneto-optical trap has been demonstrated, where molecules approached the Doppler limit. However, the sub-Doppler temperatures required for most applications have not yet been reached. Here we cool molecules to 50 uK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study ultracold collisions and ultracold chemistry

    Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies

    Get PDF
    Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have, however, been questioned, in part because of the bias induced by population stratification. This is a consequence of systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or false negative findings. Many strategies are available to account for stratification but their performances differ, for instance according to the type of population structure, the disease susceptibility locus minor allele frequency, the degree of sampling imbalanced, or the sample size. We focus on the type of population structure and propose a comparison of the most commonly used methods to deal with stratification that are the Genomic Control, Principal Component based methods such as implemented in Eigenstrat, adjusted Regressions and Meta-Analyses strategies. Our assessment of the methods is based on a large simulation study, involving several scenarios corresponding to many types of population structures. We focused on both false positive rate and power to determine which methods perform the best. Our analysis showed that if there is no population structure, none of the tests led to a bias nor decreased the power except for the Meta-Analyses. When the population is stratified, adjusted Logistic Regressions and Eigenstrat are the best solutions to account for stratification even though only the Logistic Regressions are able to constantly maintain correct false positive rates. This study provides more details about these methods. Their advantages and limitations in different stratification scenarios are highlighted in order to propose practical guidelines to account for population stratification in Genome-Wide Association Studies

    Identifying Host Genetic Risk Factors in the Context of Public Health Surveillance for Invasive Pneumococcal Disease

    Get PDF
    Host genetic factors that modify risk of pneumococcal disease may help target future public health interventions to individuals at highest risk of disease. We linked data from population-based surveillance for invasive pneumococcal disease (IPD) with state-based newborn dried bloodspot repositories to identify biological samples from individuals who developed invasive pneumococcal disease. Genomic DNA was extracted from 366 case and 732 anonymous control samples. TagSNPs were selected in 34 candidate genes thought to be associated with host response to invasive pneumococcal disease, and a total of 326 variants were successfully genotyped. Among 543 European Americans (EA) (182 cases and 361 controls), and 166 African Americans (AA) (53 cases and 113 controls), common variants in surfactant protein D (SFTPD) are consistently underrepresented in IPD. SFTPD variants with the strongest association for IPD are intronic rs17886286 (allelic OR 0.45, 95% confidence interval (CI) [0.25, 0.82], with p = 0.007) in EA and 5′ flanking rs12219080 (allelic OR 0.32, 95%CI [0.13, 0.78], with p = 0.009) in AA. Variants in CD46 and IL1R1 are also associated with IPD in both EA and AA, but with effects in different directions; FAS, IL1B, IL4, IL10, IL12B, SFTPA1, SFTPB, and PTAFR variants are associated (p≤0.05) with IPD in EA or AA. We conclude that variants in SFTPD may protect against IPD in EA and AA and genetic variation in other host response pathways may also contribute to risk of IPD. While our associations are not corrected for multiple comparisons and therefore must be replicated in additional cohorts, this pilot study underscores the feasibility of integrating public health surveillance with existing, prospectively collected, newborn dried blood spot repositories to identify host genetic factors associated with infectious diseases

    Comparative Developmental Expression Profiling of Two C. elegans Isolates

    Get PDF
    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism

    Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations
    corecore