109 research outputs found

    Thromboelastography results on citrated whole blood from clinically healthy cats depend on modes of activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the last decade, thromboelastography (TEG) has gained increasing acceptance as a diagnostic test in veterinary medicine for evaluation of haemostasis in dogs, however the use of TEG in cats has to date only been described in one previous study and a few abstracts. The objective of the present study was to evaluate and compare three different TEG assays in healthy cats, in order to establish which assay may be best suited for TEG analyses in cats.</p> <p>Methods</p> <p>90 TEG analyses were performed on citrated whole blood samples from 15 clinically healthy cats using assays without activator (native) or with human recombinant tissue factor (TF) or kaolin as activators. Results for reaction time (R), clotting time (K), angle (α), maximum amplitude (MA) and clot lysis (LY30; LY60) were recorded.</p> <p>Results</p> <p>Coefficients of variation (CVs) were highest in the native assay and comparable in TF and kaolin activated assays. Significant differences were observed between native and kaolin assays for all measured parameters, between kaolin and TF for all measured parameters except LY60 and between native and TF assays for R and K.</p> <p>Conclusion</p> <p>The results indicate that TEG is a reproducible method for evaluation of haemostasis in clinically healthy cats. However, the three assays cannot be used interchangeably and the kaolin- and TF activated assays have the lowest analytical variation indicating that using an activator may be superior for performing TEG in cats.</p

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy

    Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia

    Get PDF
    Pancreatic cancer is a highly lethal malignancy with a dismal 5-year survival of less than 5%. The scarcity of early biomarkers has considerably hindered our ability to launch preventive measures for this malignancy in a timely manner. Neutrophil gelatinase-associated lipocalin (NGAL), a 24-kDa glycoprotein, was reported to be upregulated nearly 27-fold in pancreatic cancer cells compared to normal ductal cells in a microarray analysis. Given the need for biomarkers in the early diagnosis of pancreatic cancer, we investigated the expression of NGAL in tissues with the objective of examining if NGAL immunostaining could be used to identify foci of pancreatic intraepithelial neoplasia, premalignant lesions preceding invasive cancer. To examine a possible correlation between NGAL expression and the degree of differentiation, we also analysed NGAL levels in pancreatic cancer cell lines with varying grades of differentiation. Although NGAL expression was strongly upregulated in pancreatic cancer, and moderately in pancreatitis, only a weak expression could be detected in the healthy pancreas. The average composite score for adenocarcinoma (4.26±2.44) was significantly higher than that for the normal pancreas (1.0) or pancreatitis (1.0) (P<0.0001). Further, although both well- and moderately differentiated pancreatic cancer were positive for NGAL, poorly differentiated adenocarcinoma was uniformly negative. Importantly, NGAL expression was detected as early as the PanIN-1 stage, suggesting that it could be a marker of the earliest premalignant changes in the pancreas. Further, we examined NGAL levels in serum samples. Serum NGAL levels were above the cutoff for healthy individuals in 94% of pancreatic cancer and 62.5% each of acute and chronic pancreatitis samples. However, the difference between NGAL levels in pancreatitis and pancreatic cancer was not significant. A ROC curve analysis revealed that ELISA for NGAL is fairly accurate in distinguishing pancreatic cancer from non-cancer cases (area under curve=0.75). In conclusion, NGAL is highly expressed in early dysplastic lesions in the pancreas, suggesting a possible role as an early diagnostic marker for pancreatic cancer. Further, serum NGAL measurement could be investigated as a possible biomarker in pancreatitis and pancreatic adenocarcinoma

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    High-quality habitat and facilitation ameliorate competitive effects of prior residents on new settlers

    Get PDF
    Many species disperse during their lifetime. Two factors that can affect the performance of individuals following dispersal are the presence of conspecifics and intrinsic habitat quality at the settlement site. Detecting the influence of these factors can be difficult for at least two reasons: (1) the outcomes of interactions with conspecifics are often variable including both competition and facilitation, and (2) selection of high quality habitats often leads to positive covariance between habitat quality and density. In this study, I investigate positive and negative effects of resident blue streak cleaner wrasse (Labroides dimidiatus) on the growth and survival of recently settled conspecifics while accounting for habitat quality. Juvenile L. dimidiatus settle near adult conspecifics, but likely have to compete with resident adults for access to food. However, field experiments indicate that settlers have access to more resources at occupied sites, and as a result, grow faster despite evidence for competition with residents. This result is a direct consequence of two factors: (1) resident conspecifics facilitate settlers by attracting client fish, and (2) resident conspecifics are strongly associated with high quality habitat. These results highlight the need to simultaneously consider habitat quality and competitive and facilitative interactions between conspecifics when making inferences about ecological processes from spatial patterns of individual performance

    Use of risk stratification to target therapies in patients with recent onset arthritis; design of a prospective randomized multicenter controlled trial

    Get PDF
    Background. Early and intensive treatment is important to inducing remission and preventing joint damage in patients with rheumatoid arthritis. While intensive combination therapy (Disease Modifying Anti-rheumatic Drugs and/or biologicals) is the most effective, rheumatologists in daily clinical practice prefer to start with monotherapy methotrexate and bridging corticosteroids. Intensive treatment should be started as soon as the first symptoms manifest, but at this early stage, ACR criteria may not be fulfilled, and there is a danger of over-treatment. We will therefore determine which induction therapy is most effective in the very early stage of persistent arthritis. To overcome over-treatment and under-treatment, the intensity of induction therapy will be based on a prediction model that predicts patients' propensity for persistent arthritis. Methods. A multicenter stratified randomized single-blind controlled trial is currently being performed in patients 18 years or older with recent-onset arthritis. Eight hundred ten patients are being stratified according to the likelihood of their developing persistent arthritis. In patients with a high probability of persistent arthritis, we will study combination Disease Modifying Antirheumatic Drug therapy compared to monotherapy methotrexate. In patients with an intermediate probability of persistent arthritis, we will study Disease Modifying Antirheumatic Drug of various intensities. In patients with a low probability, we will study non-steroidal anti-inflammatory drugs, hydroxychloroquine and a single dose of corticosteroids. If disease activity is not sufficiently reduced, treatment will be adjusted according to a step-up protocol. If remission is achieved for at least six months, medication will be tapered off. Patients will be followed up every three months over two years. Discussion. This is the first rheumatological study to base treatment in early arthritis on a prediction rule. Treatment will be stratified according to the probability of persistent arthritis, and different combinations of treatment per stratum will be evaluated. Treatment will be started early, and patients will not need to meet the ACR-criteria for rheumatoid arthritis. Trial registration. This trial has been registered in Current Controlled Trials with the ISRCTN26791028

    Mechanobiological Modulation of Cytoskeleton and Calcium Influx in Osteoblastic Cells by Short-Term Focused Acoustic Radiation Force

    Get PDF
    Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm2, suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound
    corecore