11 research outputs found

    Structural and functional responses of xylem in Rhizophora mucronata Lam. seedlings under drought and hypersaline conditions

    Get PDF
    Water translocation in mangrove seedlings is often affected by water stress conditions such as drought, hyper-salinities and their frequent variations. This study was therefore aimed at studying the wood anatomical responses of xylem tissue and hydraulic conductivity of Rhizophora mucronata Lam., a common species in mangrove planting, under different levels of drought [25%, ~50% and ~100% of water holding capacity (WHC)] and soil salinity [high salinity (35 psu), moderate salinity (15 psu) and freshwater (0 psu)]. As wood anatomical responses, significantly higher vessel density, vessel grouping (P<0.001) along with narrow vessel elements (P<0.001) were observed in plants grown in the 25% and 50% WHCs and high salinity treatments. All these anatomical responses are more directed towards avoidance of vessel cavitation which is commonly found under water deficit conditions. The results showed that R. mucronata plants failed to maintain efficient transportation of water when the field capacity was 50% of WHC or lower and the level of salinity was 35 psu or greater, as evident by the reduction of water conductive areas, vessel areas and hydraulic conductivity (P<0.05). Overall, water use efficiency of R. mucronata seedlings under the imposed water stress conditions has remarkably reduced and it further indicated that such imposed stress conditions directly affect the survival of planted seedlings as depicted by the significantly low survival in 25% and 50% of WHCs and high salinity. Therefore, in-depth study on lagoon hydrology including inundation levels, water depth, salinity and the selection of correct tidal positioning is highly recommended as prerequisites in mangrove planting

    Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic

    Get PDF
    © 2021 The Authors. While mangroves are increasingly described as social-ecological systems (SESs), performing SES research is so much more than merely documenting local resource utilisation patterns in case studies. The aim of this paper is to review and show how ecological, human and institutional resilience could be understood and fostered in an era of uncertainty, through the adaptive cycle (AC) heuristic. Uncertainties come in many forms and shapes: climate change, social and economic dynamics, natural disasters, political and institutional disruption and ever-increasing public demands for participation. Social-ecological studies form windows of experimentation that can provide insights beyond their case-specific context. In order to synthesise and structure the cumulative knowledge base arising from existing and future studies, the need for a suitable overarching framework arose. Here, the AC heuristic represents the connectedness between variables of the mangrove SES versus the mangrove's accumulated capital (natural, built, human and social). We posit that the AC heuristic can be used to interpret spatial and temporal changes (ecological, social, economic, political) in mangrove SESs and we exemplify it by using the 2004 Indian Ocean tsunami as well as a century-long silviculture case. The AC, combined with the SES scheme, allows integration of the spato-temporal dynamics and the multi-dimensional character of mangrove SESs. We also reviewed the ecosystem functions, services and disservices of mangrove SESs, linking each of them to SES capital and variable (fast or slow) attributes, which in turn are closely linked to the different axes and phases of the AC. We call upon mangrove scientists from the natural, applied, social and human sciences to join forces in fitting diversified empirical data from multiple case studies around the world to the AC heuristic. The aim is to reflect on and understand such complex dynamic systems with stakeholders having various (mutual) relationships at risk of breaking down, and to prepare for interactive adaptive planning for mangrove forests.Belgian Science Policy Office ‘EVAMAB – Economic valuation of ecosystem services in Man & Biosphere Reserves' - BELSPO (BL/58/UN32); Erasmus Mundus Masters Course in Tropical Biodiversity and Ecosystems (TROPIMUNDO); VLIR-UOS-funded GREENDYKE Project (ZEIN2008PR347); BELSPO-funded MAMAFOREST-Project (SR/00/323); ZMT Academy travel grant; Singapore National Parks Board (NParks); TUYF Charitable Trust; HKU Seed Fund for Research; International Coral Reef Initiative (ICRI); UNEP/GEF Blue Forest Project; Pew Charitable Trust; Department of Science and Technology, India INSPIRE Faculty scheme (IFA18-LSPA111)
    corecore