2,055 research outputs found

    Elucidating the chemiexcitation of dioxetanones by replacing the peroxide bond with S-S, N-N and C-C bonds

    Get PDF
    Dioxetanone is one of the prototypical cyclic peroxide intermediates in several chemiluminescent and bioluminescent systems, in which thermolysis reactions allow efficient singlet chemiexcitation. While the chemiexcitation mechanism of dioxetanone and peroxide intermediates is still far from understood, the presence of a peroxide bond that undergoes bond breaking has been found to be a constant. Here we have addressed the following questions: can other non-peroxide bonds lead to chemiexcitation and, if not, can the differences between dioxetanone and non-peroxide derivatives help to elucidate their chemiexcitation mechanism? To this end, we have used a reliable TD-DFT approach to model the thermolysis and chemiexcitation of a model dioxetanone and its three other non-peroxide derivatives. The results showed that only the dioxetanone molecule could lead to chemiluminescence as it is the only one for which thermolysis is energetically favorable and provides a pathway for singlet chemiexcitation. Finally, the chemiexcitation of the model dioxetanone is explained by its access, during thermolysis, to a biradical region where the ground and excited states are degenerate. This occurs due to an increased interaction between the reaction fragments, which extends the biradical regions and delays the rupture of the peroxide ring

    Combined Experimental and Theoretical Investigation into the Photophysical Properties of Halogenated Coelenteramide Analogs

    Get PDF
    Marine Coelenterazine is one of the most well-known chemi-/bioluminescent systems, and in which reaction the chemi-/bioluminophore (Coelenteramide) is generated and chemiexcited to singlet excited states (leading to light emission). Recent studies have shown that the bromination of compounds associated with the marine Coelenterazine system can provide them with new properties, such as anticancer activity and enhanced emission. Given this, our objective is to characterize the photophysical properties of a previously reported brominated Coelenteramide analog, by employing a combined experimental and theoretical approach. To better analyze the potential halogen effect, we have also synthesized and characterized, for the first time, two new fluorinated and chlorinated Coelenteramide analogs. These compounds show similar emission spectra in aqueous solution, but with different fluorescence quantum yields, in a trend that can be correlated with the heavy-atom effect (F > Cl > Br). A blue shift in emission in other solvents is also verified with the F-Cl-Br trend. More relevantly, the fluorescence quantum yield of the brominated analog is particularly sensitive to changes in solvent, which indicates that this compound has potential use as a microenvironment fluorescence probe. Theoretical calculations indicate that the observed excited state transitions result from local excitations involving the pyrazine ring. The obtained information should be useful for the further exploration of halogenated Coelenteramides and their luminescent properties

    Investigation of the Anticancer and Drug Combination Potential of Brominated Coelenteramines toward Breast and Prostate Cancer

    Get PDF
    Cancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated coelenteramines, which are metabolic products and synthesis precursors of the chemi-/bioluminescent system of marine coelenterazine. The evaluation of the anticancer potential of these molecules was carried out for both prostate and breast cancer, while also exploring their potential for use in combination therapy. Our results provided further insight into the structure-activity relationship of this type of molecule, such as their high structural specificity, as well highlighting the 4-bromophenyl moiety as essential for the anticancer activity. The obtained data also indicated that, despite their similarity, the anticancer activity displayed by both brominated coelenteramines and coelenterazines should arise from independent mechanisms of action. Finally, one of the studied coelenteramines was able to improve the profile of a known chemotherapeutic agent, even at concentrations in which its anticancer activity was not relevant. Thus, our work showed the potential of different components of marine chemi-/bioluminescent systems as novel anticancer molecules, while providing useful information for future optimizations

    Fluid flow through porous media using distinct element based numerical method

    Get PDF
    Many analytical and numerical methods have been developed to describe and analyse fluid flow through the reservoir’s porous media. The medium considered by most of these models is continuum based homogeneous media. But if the formation is not homogenous or if there is some discontinuity in the formation, most of these models become very complex and their solutions lose their accuracy, especially when the shape or reservoir geometry and boundary conditions are complex. In this paper, distinct element method (DEM) is used to simulate fluid flow in porous media. The DEM method is independent of the initial and boundary conditions, as well as reservoir geometry and discontinuity. The DEM based model proposed in this study is appeared to be unique in nature with capability to be used for any reservoir with higher degrees of complexity associated with the shape and geometry of its porous media, conditions of fluid flow, as well as initial and boundary conditions. This model has first been developed by Itasca Consulting Company and is further improved in this paper. Since the release of the model by Itasca, it has not been validated for fluid flow application in porous media, especially in case of petroleum reservoir. In this paper, two scenarios of linear and radial fluid flow in a finite reservoir are considered. Analytical models for these two cases are developed to set a benchmark for the comparison of simulation data. It is demonstrated that the simulation results are in good agreement with analytical results. Another major improvement in the model is using the servo controlled walls instead of particles to introduce tectonic stresses on the formation to simulate more realistic situations. The proposed model is then used to analyse fluid flow and pressure behaviour for hydraulically induced fractured and naturally fractured reservoir to justify the potential application of the model

    Target-Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity by Applying the Heavy-Atom Effect

    Get PDF
    Photodynamic therapy (PDT) is an anticancer therapeutic modality with remarkable advantages over more conventional approaches. However, PDT is greatly limited by its dependence on external light sources. Given this, PDT would benefit from new systems capable of a light-free and intracellular photodynamic effect. Herein, we evaluated the heavy-atom effect as a strategy to provide anticancer activity to derivatives of coelenterazine, a chemiluminescent single-molecule widespread in marine organisms. Our results indicate that the use of the heavy-atom effect allows these molecules to generate readily available triplet states in a chemiluminescent reaction triggered by a cancer marker. Cytotoxicity assays in different cancer cell lines showed a heavy-atom-dependent anticancer activity, which increased in the substituent order of hydroxyl < chlorine < bromine. Furthermore, it was found that the magnitude of this anticancer activity is also dependent on the tumor type, being more relevant toward breast and prostate cancer. The compounds also showed moderate activity toward neuroblastoma, while showing limited activity toward colon cancer. In conclusion, the present results indicate that the application of the heavy-atom effect to marine coelenterazine could be a promising approach for the future development of new and optimized self-activating and tumor-selective sensitizers for light-free PDT

    Multiplexed immunosensors for point-of-care diagnostic applications

    Get PDF
    Accurate, reliable, and cost-effective immunosensors are clinically important for the early diagnosis and monitoring of progressive diseases, and multiplexed sensing is a promising strategy for the next generation of diagnostics. This strategy allows for the simultaneous detection and quantification of multiple biomarkers with significantly enhanced reproducibility and reliability, whilst requiring smaller sample volumes, fewer materials, and shorter average analysis time for individual biomarkers than individual tests. In this opinionated review, we compare different techniques for the development of multiplexed immunosensors. We review the state-of-the-art approaches in the field of multiplexed immunosensors using electrical, electrochemical, and optical methods. The barriers that prevent translating this sensing strategy into clinics are outlined together with the potential solutions. We also share our vision on how multiplexed immunosensors will continue their evolution in the coming years

    Instabilities and robust control in natural resource management

    Get PDF
    Most renewable natural resources exhibit marked demographic and environmental stochasticities, which are exarcebated in management decisions by the uncertainty regarding the choice of an appropriate model to describe system dynamics. Moreover, demand and supply analysis often indicates the presence of instabilities and multiple equilibria, which may lead to management problems that are intensified by uncertainty on the evolution of the resource stock. In this paper the fishery management problem is used as an example to explore the potential of robust optimal control, where the objective is to choose a harvesting rule that will work under a range of admissible specifications for the stock-recruitment equation. The paper derives robust harvesting rules leading to a unique equilibrium, which could be helpful in the design of policy instruments such as robust quota systems.info:eu-repo/semantics/publishedVersio

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
    corecore