1,361 research outputs found
Correspondence from E.B. Lovejoy, August 11, 1862
Correspondence from E.B. Lovejoy regarding absent soldiers from Androscoggin Countyhttps://digitalmaine.com/absent_soldiers/1008/thumbnail.jp
Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article
A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling
Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure
The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition
The Equivalence Principle and the Constants of Nature
We briefly review the various contexts within which one might address the
issue of ``why'' the dimensionless constants of Nature have the particular
values that they are observed to have. Both the general historical trend, in
physics, of replacing a-priori-given, absolute structures by dynamical
entities, and anthropic considerations, suggest that coupling ``constants''
have a dynamical nature. This hints at the existence of observable violations
of the Equivalence Principle at some level, and motivates the need for improved
tests of the Equivalence Principle.Comment: 12 pages; invited talk at the ISSI Workshop on the Nature of Gravity:
Confronting Theory and Experiment in Space, Bern, Switzerland, 6-10 October
2008; to appear in Space Science Review
Experimental Observation of a Minority Electron Mobility Enhancement in degenerately doped p-Type GaAs
The variation of minority electron mobility with doping density in p+-GaAs has been measured with the zero-field time-of-flight technique. The results from a series of nine GaAs films doped between 1 X lOI and 8 X 10” cmm3 show the mobility decreasing from 1950 cm2 V-’ s-l at 1 X 10” cmm3 to 1370 cm2 V-l s-l at 9X 10” cmB3. For the doping range 9 x 1018-8x 1019 cme3, the decreasing trend in mobility is reversed. The measured mobility of 3710 cm2 V-’ s-l at 8 X 10” cmp3 is about three times higher than the measured value at 9 X 1018 cmm3. These results confirm and extend recent transistor-based measurements and are in accord with recent theoretical predictions that attribute the increase in minority electron mobility in p+-GaAs to reductions in plasmon and carrier-carrier scattering at high hole densities
The Otterbein Miscellany - September 1979
https://digitalcommons.otterbein.edu/miscellany/1019/thumbnail.jp
The Otterbein Miscellany - Fall 1979
https://digitalcommons.otterbein.edu/miscellany/1017/thumbnail.jp
The Otterbein Miscellany - December 1976
https://digitalcommons.otterbein.edu/miscellany/1020/thumbnail.jp
Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands
The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program
Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton
This is the author's accepted manuscriptFinal version available from NAS via the DOI in this recordPhytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.A.M. and T.A.R. are funded by the Royal Society, through Newton and University Research fellowships, respectively. This work is supported in part by research grants from The Gordon and Betty Moore Foundation (GBMF5514), Leverhulme Trust (PLP-2014-147), and the University of Exeter. The University of Exeter OmniLog facility is supported by a Wellcome Trust Institutional Strategic Support Award WT105618MA. Phylogenetic reconstructions were computed on the Data Intensive Academic Grid (National Science Foundation, MRI-R2 Project DBI-0959894)
- …