40 research outputs found
Recommended from our members
Density dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production, and sporulation
Functional differences between the arbuscular mycorrhizal fungi Glomus intraradices Schenk and Smith and Scutellospora heterogama Nicolson and Gerdemann as they affect Persea americana Mill. growth, glomalin, and fungal sporulation were examined by varying the composition and relative density of the two fungi over a gradient of available phosphorus (P). The plant benefit provided by these mycorrhizal fungi together was not a simple sum of the benefits pro-vided by each fungus in monoculture at its respective density. Glomus intraradices and S. heterogama interacted to reduce plant growth rates and uptake of P, zinc (Zn), and iron (Fe) relative to plants inoculated with G. intraradices alone. Thus, for plant growth and nutrition, no evidence for functional complementarity was detected. Instead, interspecific interactions between mycorrhizal fungi resulted in a negative feedback on plants. Under high available P, fungal functional differences were reduced, whereas the overall difference between mycorrhizal and nonmycorrhizal plants was greatest. Overall, S. heterogama produced more glomalin than did G. intraradices. In a mixture, sporulation of the inferior mutualist, S. heterogama, was lower than that of the superior mutualist, G. intraradices, but interspecific fungal interactions increased the sporulation of both fungi. Despite the negative impact of interspecific interactions on plants, supporting multiple arbuscular mycorrhizal fungi was of greater benefit than being nonmycorrhizal. © 2007 NRC
A comparison of sunlight exposure in men with prostate cancer and basal cell carcinoma
Ultraviolet radiation exposure increases basal cell carcinoma (BCC) risk, but may be protective against prostate cancer. We attempted to identify exposure patterns that confer reduced prostate cancer risk without increasing that of BCC. We used a questionnaire to assess exposure in 528 prostate cancer patients and 442 men with basal cell carcinoma, using 365 benign prostatic hypertrophy patients as controls. Skin type 1 (odds ratio (OR)=0.47, 95% CI=0.26–0.86), childhood sunburning (OR=0.38, 95% CI=0.26–0.57), occasional/frequent sunbathing (OR=0.21, 95% CI=0.14–0.31), lifetime weekday (OR=0.85, 95% CI=0.80–0.91) and weekend exposure (OR=0.79, 95% CI=0.73–0.86) were associated with reduced prostate cancer risk. Skin type 1 (OR=4.00, 95% CI=2.16–7.41), childhood sunburning (OR=1.91, 95% CI=1.36–2.68), regular foreign holidays (OR=6.91, 95% CI=5.00-9.55) and weekend (OR=1.17, 95% CI=1.08–1.27) but not weekday exposure were linked with increased BCC risk. Combinations of one or two parameters were associated with a progressive decrease in the ORs for prostate cancer risk (OR=0.54–0.25) with correspondingly increased BCC risk (OR=1.60–2.54). Our data do not define exposure patterns that reduce prostate cancer risk without increasing BCC risk
Impact of endophyte inoculation on the morphological identity of cultivars of Lolium perenne (L) and Festuca arundinacea (Schreb.)
Publication history: Accepted - 9 April 2020; Published online - 5 May 2020Grass endophytes have been shown to confer enhanced environmental resilience to symbiont cultivars with reports of modified growth. If inoculating with an endophyte (E+) made an accession morphologically distinct from its registered endophyte free (E−) accession, there could be protection and ownership issues for testing authorities and breeders. This study investigated if, in official Plant Breeders Rights (PBR) field trials, the morphological characteristics of E+and E− accessions of perennial ryegrass and tall fescue cultivars were sufficiently modified to designate them as mutually distinct and also distinct from their definitive accessions (Def), held by the testing authorities. Testing perennial ryegrass on 17 characters at 2 sites generated 48,960 observations and for tall fescue on 9 characters at 1 site, 12,960 observations (each for 3 accessions of 4 cultivars × 60 plants × 2 growing cycles). Distinctness required a p < 0.01 difference in a single character from the combined over years analysis (COYD). A few significant differences were recorded between E− and E+accessions. Cultivar Carn E+ was smaller than Carn E− for Infloresence Length (p < 0.01) in both years but COYD analysis (p < 0.05) was insufficient to declare distinctiveness. Overall, the number of observed differences between E−/E+ accessions was less or similar to the number expected purely by chance. In contrast, comparisons between Def and E− or E+ accessions showed a number of significant differences that were substantially more numerous than expected by chance. These results showed no conclusive evidence of endophyte inclusion creating false PBR distinctions but unexpectedly, several E− and E+ accessions were distinguished from their official definitive stock.This study was jointly funded by the EU Community Plant Variety Office, Angers, France and Euroseeds, Brussels, Belgium
Recommended from our members
Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations
Many plant species adapted to P-impoverished soils, including jarrah (Eucalyptus marginata), develop toxicity symptoms when exposed to high doses of phosphate (Pi) and its analogs such as phosphite (Phi) and arsenate (AsV). The present study was undertaken to investigate the effects of fungal symbionts Scutellospora calospora, Scleroderma sp., and Austroboletus occidentalis on the response of jarrah to highly toxic pulses (1.5 mmol kg−1 soil) of Pi, Phi, and AsV. S. calospora formed an arbuscular mycorrhizal (AM) symbiosis while both Scleroderma sp. and A. occidentalis established a non-colonizing symbiosis with jarrah plants. All these interactions significantly improved jarrah growth and Pi uptake under P-limiting conditions. The AM fungal colonization naturally declines in AM-eucalypt symbioses after 2–3 months; however, in the present study, the high Pi pulse inhibited the decline of AM fungal colonization in jarrah. Four weeks after exposure to the Pi pulse, plants inoculated with S. calospora had significantly lower toxicity symptoms compared to non-mycorrhizal (NM) plants, and all fungal treatments induced tolerance against Phi toxicity in jarrah. However, no tolerance was observed for AsV-treated plants even though all inoculated plants had significantly lower shoot As concentrations than the NM plants. The transcript profile of five jarrah high-affinity phosphate transporter (PHT1 family) genes in roots was not altered in response to any of the fungal species tested. Interestingly, plants exposed to high Pi supplies for 1 day did not have reduced transcript levels for any of the five PHT1 genes in roots, and transcript abundance of four PHT1 genes actually increased. It is therefore suggested that jarrah, and perhaps other P-sensitive perennial species, respond positively to Pi available in the soil solution through increasing rather than decreasing the expression of selected PHT1 genes. Furthermore, Scleroderma sp. can be considered as a fungus with dual functional capacity capable of forming both ectomycorrhizal and non-colonizing associations, where both pathways are always accompanied by evident growth and nutritional benefits
The role of hormones in alternate bearing in citrus.
Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
Recommended from our members
Density dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production, and sporulation
Functional differences between the arbuscular mycorrhizal fungi Glomus intraradices Schenk and Smith and Scutellospora heterogama Nicolson and Gerdemann as they affect Persea americana Mill. growth, glomalin, and fungal sporulation were examined by varying the composition and relative density of the two fungi over a gradient of available phosphorus (P). The plant benefit provided by these mycorrhizal fungi together was not a simple sum of the benefits pro-vided by each fungus in monoculture at its respective density. Glomus intraradices and S. heterogama interacted to reduce plant growth rates and uptake of P, zinc (Zn), and iron (Fe) relative to plants inoculated with G. intraradices alone. Thus, for plant growth and nutrition, no evidence for functional complementarity was detected. Instead, interspecific interactions between mycorrhizal fungi resulted in a negative feedback on plants. Under high available P, fungal functional differences were reduced, whereas the overall difference between mycorrhizal and nonmycorrhizal plants was greatest. Overall, S. heterogama produced more glomalin than did G. intraradices. In a mixture, sporulation of the inferior mutualist, S. heterogama, was lower than that of the superior mutualist, G. intraradices, but interspecific fungal interactions increased the sporulation of both fungi. Despite the negative impact of interspecific interactions on plants, supporting multiple arbuscular mycorrhizal fungi was of greater benefit than being nonmycorrhizal. © 2007 NRC