14 research outputs found
Effect of increasing zinc levels on Trigonella foenum-graecum growth and photosynthesis activity
Zinc is an indispensable element for the plant growth and the cellular metabolism. However, this mineral element becomes harmful athigh quantities. The effects of high zinc supply on different physiological parameters were investigated in fenugreek. Seedlings were grown in plastic pots filled with inert sand under five ZnSO4 treatments (C: control :1.5 μM Zn; 1mM, 2 mM, 3 mM and 4 mM ZnSO4). Results showed a decrease of 56% to 75% in shoot dry weight and a decrease of 65% to 90% in roots dry weight, relatively to the control. In addition we showed a significant reduction in photosynthetic parameters, with the highest value of CO2 assimilation under 1 mM Zn (3.3 μmol CO2, m-2·s-1) and a lower value under 4 mM Zn (0.5 μmol CO2, m-2·s-1). The concentration of zinc in plant shoot was around two folds the control under 1, 2 and 3 mM Zn and about four folds under the maximal concentration, 4 mM Zn. In roots, we showed a progressive increase of zinc content. Increasing zinc concentration induced a significant decrease of phosphorus concentration in shoot. Fenugreek was mainly affected by zinc excess greater than 1 mM ZnSO4, however at the highest concentration, fenugreek plants exhibited different adaptation strategies
Effect of intercropping alfalfa on physiological and biochemical parameters of young grapevine plants cultivated on agricultural and contaminated soils
Our research aimed to reveal the capacity of intercropping with Medicago sativa-rhizobia in the amelioration of grapevine growth in agricultural and a Cd/Pb contaminated soils. A local variety of grapevine was cultivated in monocropping and in intercropping with Medicago sativa inoculated or not with its associated rhizobia. Intercropping with alfalfa induced a significant increase in shoot and root biomass of grapevine in the agricultural soil. However, in the contaminated soil, a slight increase in root biomass was observed. Concerning photosynthesis apparatus, we showed that the presence of Cd and Pb in the soil induced a significant decrease in both CO2 assimilation rate and stomatal conductance. Interestingly, intercropping with alfalfa only and with rhizobia alleviate this effect. Similar results are obtained for chlorophyll and carotenoid content. This was associated with a significant decrease in the malondialdehyde level in leaves and roots of grapevine cultivated in intercropping with alfalfa with and without inoculation in the two soils as compared the monoculture treatment. Comparison between treatments revealed also that intercropping with alfalfa induced a decrease in the activities of some enzymes implicated in the defence to the oxidative stress such as catalase and superoxide dismutase. Regarding soluble protein content, it is needed to signal the improvement of this parameter with the intercropping system in the contaminated soil when compared to the monocropping treatment. This work highlights the importance of the use of legumes in intercropping with grapevine as intercrop plant non-competitive for soil nutrient and proving N supply for associated plants.  
Permanent improved high-quality draft genome sequence of Nocardia casuarinae strain BMG51109, an endophyte ofactinorhizal root nodules of Casuarina glauca
Here, we report the first genome sequence of aNocardiaplant endophyte, N. casuarinaestrain BMG51109, isolated fromCasu-arina glaucaroot nodules. The improved high-quality draft genome sequence contains 8,787,999 bp with a 68.90% GC contentand 7,307 predicted protein-coding genes
Permanent draft genome sequence of Nocardia sp. BMG111209, an actinobacterium isolated from nodules of Casuarina glauca
Nocardia sp. strain BMG111209 is a non-Frankia actinobacterium isolated from root nodules of Casuarina glauca in Tunisia. Here, we report the 9.1-Mbp draft genome sequence of Nocardia sp. strain BMG111209 with a G + C content of 69.19% and 8,122 candidate protein-encoding genes
Gonadal dysgenesis and the Mayer-Rokitansky-Kuster-Hauser Syndrome in a girl with a 46, XX karyotype: A case report and review of literature
Mayer-Rokitansky-Kuster-Hauser (MRKH) is a characteristic syndrome in which the Mullerian structures are absent or rudimentary. It is also associated with anomalies of the genitourinary and skeletal systems. Its association with gonadal dysgenesis is extremely rare and appears to be fortuitous, independent of chromosomal anomalies. We report such a case in a 21-year-old girl who presented primary amenorrhea and impuberism. The endocrine study revealed hypergonadotrophic hypogonadism. The karyotype was normal, 46, XX. No chromosome Y was detected at the fluorescence in situ hybridization (FISH) analysis. Internal genitalia could not be identified on the pelvic ultrasound and pelvic magnetic resonance imaging. Laparoscopy disclosed concomitant ovarian dysgenesis and MRKH syndrome. There were no other associated malformations. Hormonal substitution therapy with oral conjugated estrogens was begun. The patient has been under regular follow-up for the last two years and is doing well
Elucidating the ecological networks in stone‐dwelling microbiomes
Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions
Elucidating the ecological networks in stone-dwelling microbiomes
Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions