2,042 research outputs found

    Noninteractive fuzzy rule-based systems

    Get PDF
    In this paper, we have introduced a noninteractive model for fuzzy rule-based systems. A critical aspect of this noninteractive model is the introduction of a new set of rules with fewer parameters and without considering the interaction between the functionality of inputs. The new noninteractive model of the fuzzy rule-based system represents the output as a linear combination of the nonlinear function of individual inputs

    Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine

    Get PDF
    Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model

    Behavioural pattern identification and prediction in intelligent environments

    Get PDF
    In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments

    Prediction of mobility entropy in an ambient intelligent environment

    Get PDF
    Ambient Intelligent (AmI) technology can be used to help older adults to live longer and independent lives in their own homes. Information collected from AmI environment can be used to detect and understanding human behaviour, allowing personalized care. The behaviour pattern can also be used to detect changes in behaviour and predict future trends, so that preventive action can be taken. However, due to the large number of sensors in the environment, sensor data are often complex and difficult to interpret, especially to capture behaviour trends and to detect changes over the long-term. In this paper, a model to predict the indoor mobility using binary sensors is proposed. The model utilizes weekly routine to predict the future trend. The proposed method is validated using data collected from a real home environment, and the results show that using weekly pattern helps improve indoor mobility prediction. Also, a new measurement, Mobility Entropy (ME), to measure indoor mobility based on entropy concept is proposed. The results indicate ME can be used to distinguish elders with different mobility and to see decline in mobility. The proposed work would allow detection of changes in mobility, and to foresee the future mobility trend if the current behaviour continues
    • …
    corecore