2,042 research outputs found
Noninteractive fuzzy rule-based systems
In this paper, we have introduced a noninteractive model for fuzzy rule-based systems. A critical aspect of this noninteractive model is the introduction of a new set of rules with fewer parameters and without considering the interaction between the functionality of inputs. The new noninteractive model of the fuzzy rule-based system represents the output as a linear combination of the nonlinear function of individual inputs
Recommended from our members
Industrial application of fuzzy systems; adaptive fuzzy control of solder paste stencil printing
This paper presents an adaptive fuzzy control algorithm for the control of the solder paste stencil printing stage of surface mount printed circuit board assembly. The proposed method of automatic solder paste stencil printing consist of four blocks; fuzzy feature extraction, defect classifcation of paste deposits, adaptive fuzzy rule-based model identifcation and subsequently an optimal control action for the stencil printing process. Experimental results are presented to illustrate the capability of the algorithm
Recommended from our members
Learning fuzzy inference systems using an adaptive membership function scheme
An adaptive membership function scheme for general additive fuzzy systems is proposed in this paper. The proposed scheme can adapt a proper membership function for any nonlinear input-output mapping, based upon a minimum number of rules and an initial approximate membership function. This parameter adjustment procedure is performed by computing the error between the actual and the desired decision surface. Using the proposed adaptive scheme for fuzzy system, the number of rules can be minimized. Nonlinear function approximation and truck backer-upper control system are employed to demonstrate the viability of the proposed method
Recommended from our members
Information acquisition using eye-gaze tracking for person-following with mobile robots
In the effort of developing natural means for human-robot interaction (HRI), signifcant amount of research has been focusing on Person-Following (PF) for mobile robots. PF, which generally consists of detecting, recognizing and following people, is believed to be one of the required functionalities for most future robots that share their environments with their human companions. Research in this field is mostly directed towards fully automating this functionality, which makes the challenge even more tedious. Focusing on this challenge leads research to divert from other challenges that coexist in any PF system. A natural PF functionality consists of a number of tasks that are required to be implemented in the system. However, in more realistic life scenarios, not all the tasks required for PF need to be automated. Instead, some of these tasks can be operated by human operators and therefore require natural means of interaction and information acquisition. In order to highlight all the tasks that are believed to exist in any PF system, this paper introduces a novel taxonomy for PF. Also, in order to provide a natural means for HRI, TeleGaze is used for information acquisition in the implementation of the taxonomy. TeleGaze was previously developed by the authors as a means of natural HRI for teleoperation through eye-gaze tracking. Using TeleGaze in the aid of developing PF systems is believed to show the feasibility of achieving a realistic information acquisition in a natural way
Recommended from our members
A new approach to adaptive fuzzy control: the controller output error method
The controller output error method (COEM) is introduced and applied to the design of adaptive fuzzy control systems. The method employs a gradient descent algorithm to minimize a cost function which is based on the error at the controller output. This contrasts with more conventional methods which use the error at the plant output. The cost function is minimized by adapting some or all of the parameters of the fuzzy controller. The proposed adaptive fuzzy controller is applied to the adaptive control of a nonlinear plant and is shown to be capable of providing good overall system performance
Recommended from our members
Novel fuzzy logic controllers with self-tuning capability
Two controllers which extend the PD+I fuzzy logic controller to deal with the plant having time varying nonlinear dynamics are proposed. The adaptation ability of the first self tuning PD+I fuzzy logic controller (STPD+I_31) is achieved by adjusting the output scaling factor automatically thereby contributing to significant improvement in performance. Second controller (STPD+I_9) is the simplified version of STPD+I_31 which is designed under the imposed constraint that allows only minimum number of rules in the rule bases. The proposed controllers are compared with two classical nonlinear controllers: the pole placement self tuning PID controller and sliding mode controller. All the controllers are applied to the two-links revolute robot for the tracking control. The tracking performance of STPD+I_31 and STPD+I_9 are much better than the pole placement self tuning PID controller during high speed motions while the performance are comparable at low and medium speed. In addition, STPD+I_31 and STPD+I_9 outperform sliding mode controller using same method of comparison study
Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine
Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model
Behavioural pattern identification and prediction in intelligent environments
In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments
Prediction of mobility entropy in an ambient intelligent environment
Ambient Intelligent (AmI) technology can be used to help older adults to live longer and independent lives in their own homes. Information collected from AmI environment can be used to detect and understanding human behaviour, allowing personalized care. The behaviour pattern can also be used to detect changes in behaviour and predict future trends, so that preventive action can be taken. However, due to the large number of sensors in the environment, sensor data are often complex and difficult to interpret, especially to capture behaviour trends and to detect changes over the long-term. In this paper, a model to predict the indoor mobility using binary sensors is proposed. The model utilizes weekly routine to predict the future trend. The proposed method is validated using data collected from a real home environment, and the results show that using weekly pattern helps improve indoor mobility prediction. Also, a new measurement, Mobility Entropy (ME), to measure indoor mobility based on entropy concept is proposed. The results indicate ME can be used to distinguish elders with different mobility and to see decline in mobility. The proposed work would allow detection of changes in mobility, and to foresee the future mobility trend if the current behaviour continues
Recommended from our members
Matrix formulation of fuzzy rule-based systems
In this paper, a matrix formulation of fuzzy rule based systems is introduced. A gradient descent training algorithm for the determination of the unknown parameters can also be expressed in a matrix form for various adaptive fuzzy networks. When converting a rule-based system to the proposed matrix formulation, only three sets of linear/nonlinear equations are required instead of set of rules and an inference mechanism. There are a number of advantages which the matrix formulation has compared with the linguistic approach. Firstly, it obviates the differences among the various architectures; and secondly, it is much easier to organize data in the implementation or simulation of the fuzzy system. The formulation will be illustrated by a number of examples
- …