35 research outputs found

    Advances in asthma pathophysiology: stepping forward from the Maurizio Vignola experience

    Get PDF
    Maurizio Vignola was a superb and innovative researcher, who wrote seminal papers on the biology of airway epithelium in asthma. Inflammation and remodelling were the main topics of his research, mostly conducted in biopsy specimens from patients with asthma of variable severity, encompassing the entire spectrum of the disease from mild to severe asthma. His observations contributed to define the biology of asthma as we know it today, and opened the way to the personalised treatment of asthma. His group has successfully continued to investigate the biology and clinical aspects of bronchial asthma, with major interest in the clinical use of biomarkers to monitor disease activity, and in the development of new therapeutic perspectives. This review summarises the latest work on these topics proudly conducted by Maurizio's closest collaborators. The results indicate significant progress in our understanding of asthma in the last 10 years, in particular increased knowledge of the complex interaction between inflammatory and remodelling pathways, improved recognition of biological and clinical asthma phenotypes, and development of new treatment strategies, especially for patients with severe corticosteroid-resistant asthma

    25-Hydroxyvitamin D, IL-31, and IL-33 in Children with Allergic Disease of the Airways

    Get PDF
    Low vitamin D is involved in allergic asthma and rhinitis. IL-31 and IL-33 correlate with Th2-associated cytokines in allergic disease. We investigated whether low vitamin D is linked with circulating IL-31 and IL-33 in children with allergic disease of the airways. 25-Hydroxyvitamin D [25(OH) Vit D], IL-31, and IL-33 plasma levels were measured in 28 controls (HC), 11 allergic rhinitis (AR) patients, and 35 allergic asthma with rhinitis (AAR) patients. We found significant lower levels of 25(OH) Vit D in AR and in AAR than in HC. IL-31 and IL-33 plasma levels significantly increased in AAR than HC. IL-31 and IL-33 positively correlated in AR and AAR. 25(OH) Vit D deficient AAR had higher levels of blood eosinophils, exacerbations, disease duration, and total IgE than patients with insufficient or sufficient 25(OH) Vit D. In AAR 25(OH) Vit D levels inversely correlated with total allergen sIgE score and total atopy index. IL-31 and IL-33 did not correlate with 25(OH) Vit D in AR and AAR. In conclusion, low levels of 25(OH) Vit D might represent a risk factor for the development of concomitant asthma and rhinitis in children with allergic disease of the airways independently of IL-31/IL-33 Th2 activity

    Effect of high, medium, and low molecular weight hyaluronan on inflammation and oxidative stress in an in vitro model of human nasal epithelial cells

    No full text
    IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in an in vitro model of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBα phosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBα phosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation

    IL-17A-associated IKK-alpha signaling induced TSLP production in epithelial cells of COPD patients

    No full text
    Thymic stromal lymphopoietin (TSLP) is a cytokine expressed in the epithelium, involved in the pathogenesis of chronic disease. IL-17A regulates airway inflammation, oxidative stress, and reduction of steroid sensitivity in chronic obstructive pulmonary disease (COPD). TSLP and IL-17A were measured in induced sputum supernatants (ISs) from healthy controls (HC), healthy smokers (HS), and COPD patients by enzyme-linked immunosorbent assay. Human bronchial epithelial cell line (16HBE) and normal bronchial epithelial cells were stimulated with rhIL-17A or ISs from COPD patients to evaluate TSLP protein and mRNA expression. The effects of the depletion of IL-17A in ISs, an anticholinergic drug, and the silencing of inhibitor kappa kinase alpha (IKK alpha) on TSLP production were evaluated in 16HBE cells. Coimmunoprecipitation of acetyl-histone H3(Lys14)/IKK alpha was evaluated in 16HBE cells treated with rhIL-17A and in the presence of the drug. TSLP and IL-17A levels were higher in ISs from COPD patients and HS compared with HC. TSLP protein and mRNA increased in 16HBE cells and in normal bronchial epithelial cells stimulated with ISs from COPD patients compared with ISs from HC and untreated cells. IKK alpha silencing reduced TSLP production in 16HBE cells stimulated with rhIL-17A and ISs from COPD patients. RhIL-17A increased the IKK alpha/acetyl-histone H3 immunoprecipitation in 16HBE cells. The anticholinergic drug affects TSLP protein and mRNA levels in bronchial epithelial cells treated with rhIL-17A or with ISs from COPD patients, and IKK alpha mediated acetyl-histone H3(Lys14). IL-17A/IKK alpha signaling induced the mechanism of chromatin remodeling associated with acetyl-histone H3(Lys14) and TSLP production in bronchial epithelial cells. Anticholinergic drugs might target TSLP derived from epithelial cells during the treatment of COPD

    Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    No full text
    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells
    corecore