6,264 research outputs found
Probing Unstable Massive Neutrinos with Current Cosmic Microwave Background Observations
The pattern of anisotropies in the Cosmic Microwave Background depends upon
the masses and lifetimes of the three neutrino species. A neutrino species of
mass greater than 10 eV with lifetime between 10^{13} sec and 10^{17} sec
leaves a very distinct signature (due to the integrated Sachs-Wolfe effect):
the anisotropies at large angles are predicted to be comparable to those on
degree scales. Present data exclude such a possibility and hence this region of
parameter space. For eV, sec, we find
an interesting possibility: the Integrated Sachs Wolfe peak produced by the
decaying neutrino in low- models mimics the acoustic peak expected in
an model.Comment: 5 pages, 4 figure
COrE (Cosmic Origins Explorer) A White Paper
COrE (Cosmic Origins Explorer) is a fourth-generation full-sky,
microwave-band satellite recently proposed to ESA within Cosmic Vision
2015-2025. COrE will provide maps of the microwave sky in polarization and
temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an
angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and
sensitivities roughly 10 to 30 times better than PLANCK (depending on the
frequency channel). The COrE mission will lead to breakthrough science in a
wide range of areas, ranging from primordial cosmology to galactic and
extragalactic science. COrE is designed to detect the primordial gravitational
waves generated during the epoch of cosmic inflation at more than
for . It will also measure the CMB gravitational lensing
deflection power spectrum to the cosmic variance limit on all linear scales,
allowing us to probe absolute neutrino masses better than laboratory
experiments and down to plausible values suggested by the neutrino oscillation
data. COrE will also search for primordial non-Gaussianity with significant
improvements over Planck in its ability to constrain the shape (and amplitude)
of non-Gaussianity. In the areas of galactic and extragalactic science, in its
highest frequency channels COrE will provide maps of the galactic polarized
dust emission allowing us to map the galactic magnetic field in areas of
diffuse emission not otherwise accessible to probe the initial conditions for
star formation. COrE will also map the galactic synchrotron emission thirty
times better than PLANCK. This White Paper reviews the COrE science program,
our simulations on foreground subtraction, and the proposed instrumental
configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added,
minor errors corrected
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
- âŠ