55,507 research outputs found

    Vertical velocities from proper motions of red clump giants

    Full text link
    We derive the vertical velocities of disk stars in the range of Galactocentric radii of R=5-16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. We used the proper motions of the PPMXL survey, correcting of systematic errors with the reference of quasars. From the color-magnitude diagram K versus (J-K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. A simple model of warp with the height of the disk z_w(R,phi)=gamma (R-R_sun) sin(phi-phi_w) fits the vertical motions if d(gamma)/dt/gamma=-34+/-17 Gyr^{-1}; the contribution to d(gamma)/dt comes from the southern warp and is negligible in the north. The vertical motion in the warp apparently indicates that the main S-shaped structure of the warp is a long-lived feature, whereas the perturbation that produces an irregularity in the southern part is most likely a transient phenomenon. With the use of the Gaia end-of-mission products together with spectroscopically classified red clump giants, the precision in vertical motions can be increased by an order of magnitude at least.Comment: Accepted for publication in A&A. arXiv admin note: text overlap with arXiv:1402.355

    Rescaled density expansions and demixing in hard-sphere binary mixtures

    Get PDF
    The demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.Comment: 5 pages, 1 figure; to be published in The Journal of Chemical Physic
    • …
    corecore