23,095 research outputs found

    The Digitized Second Palomar Observatory Sky Survey (DPOSS) II: Photometric Calibration

    Get PDF
    We present the photometric calibration technique for the Digitized Second Palomar Observatory Sky Survey (DPOSS), used to create seamless catalogs of calibrated objects over large sky areas. After applying a correction for telescope vignetting, the extensive plate overlap regions are used to transform sets of plates onto a common instrumental photometric system. Photometric transformations to the Gunn gri system for each plate, for stars and galaxies, are derived using these contiguous stitched areas and an extensive CCD imaging library obtained for this purpose. We discuss the resulting photometric accuracy, survey depth, and possible systematic errors.Comment: 25 pages, 13 figures. Accepted to AJ. Some figures shrunk or missing to limit file size; the full paper is available at http://www.sdss.jhu.edu/~rrg/science/papers/photometrypaper.ps.g

    Fractal analysis of weld defect patterns obtained by radiographic tests

    Full text link
    This paper presents a fractal analysis of radiographic patterns obtained from specimens with three types of inserted welding defects: lack of fusion, lack of penetration, and porosity. The study focused on patterns of carbon steel beads from radiographs of the International Institute of Welding (IIW). The radiographs were scanned using a greyscale with 256 levels, and the fractal features of the surfaces constructed from the radiographic images were characterized by means of Hurst, detrended-fluctuation, and minimal-cover analyses. A Karhunen-Loeve transformation was then used to classify the curves obtained from the fractal analyses of the various images, and a study of the classification errors was performed. The obtained results indicate that fractal analyses can be an effective additional tool for pattern recognition of weld defects in radiographic tests.Comment: 7 pages, 2 figures. To appear AIP Conference Proceedings - QNDE 200

    Black hole entropy functions and attractor equations

    Get PDF
    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N=2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change

    Black Hole Microstates and Attractor Without Supersymmetry

    Get PDF
    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument.Comment: 50 pages; references adde

    Non-Supersymmetric Attractors in R2R^2 Gravities

    Full text link
    We investigate the attractor mechanism for spherically symmetric extremal black holes in a theory of general R2R^2 gravity in 4-dimensions, coupled to gauge fields and moduli fields. For the general R2R^2 theory, we look for solutions which are analytic near the horizon, show that they exist and enjoy the attractor behavior. The attractor point is determined by extremization of an effective potential at the horizon. This analysis includes the backreaction and supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions. To include a wider class of solutions, we continue our analysis for the specific case of a Gauss-Bonnet theory which is non-topological, due to the coupling of Gauss-Bonnet terms to the moduli fields. We find that the regularity of moduli fields at the horizon is sufficient for attractor behavior. For the non-analytic sector, this regularity condition in turns implies the minimality of the effective potential at the attractor point.Comment: 19 pages, 2 figure
    • …
    corecore