101 research outputs found
On the immunopathogenesis of systemic lupus erythematosus - Immune complexes, type I interferon system, complement system and platelets
Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disorder characterized by inflammation in several organ systems. SLE patients have an impaired ability to clear dying cells which leads to the exposure of several nuclear antigens which might break self tolerance. Autoantibodies directed against the nuclear antigens will form large immune complexes (ICs) which are central in the immunopathogenesis of SLE. Through activation of the complement system, ICs mediate tissue destruction, and through interaction with immune cells ICs induce large amounts of pro-inflammatory cytokines, including IFN-alpha. Furthermore, ICs might activate platelets and thus be involved in the development of cardiovascular diseases which is increased in SLE patients. In this thesis I have investigated the immunopathogenesis of SLE with an emphasis on ICs, type I interferon (IFN) system, complement system and platelets. In the first papers we studied the plasmacytoid dendritic cell (pDC) and properties regulating their IFN-alpha producing ability, a central cytokine in the SLE pathogenesis. We found that C1q, a component of the classical pathway of the complement system, could regulate the type I interferon production by pDCs (Paper I). Furthermore, pDCs were able to produce a pro-inflammatory protein, S100A8/A9, which is increased in SLE patients (Paper II). Next we observed that the complement system and type I IFN system affect the platelets. Platelets isolated from SLE patients were more activated, had a type I IFN signature (Paper III), as well as complement deposition on the cell surface (Paper IV). Both the type I IFN signature and the complement deposition were associated with cardiovascular disease and venous thrombosis. In the final paper we found that EndoS, a bacterial endoglycosidase, abolished all pro-inflammatory properties of ICs isolated from SLE patients (Paper V). Thus, we suggest that EndoS has the potential to be developed as a new therapy against SLE considering its potent IC-modulating effects. In summary, this thesis confirms a central role of immune complexes and their subsequent pro-inflammatory effects in the immunopathogenesis of SLE and development of cardiovascular disease and venous thrombosis
Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases
Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct “endotypes” of SLE, each with its distinct therapeutic choices
Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus
Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a serum marker for several inflammatory diseases. Furthermore, S100A8 and S100A9 have many pro-inflammatory properties such as binding to Toll-like receptor 4 (TLR4). In this study we investigated if aberrant cell surface S100A8/A9 could be seen in SLE and if plasmacytoid dendritic cells (pDCs) could synthesize S100A8/A9. Methods: Flow cytometry, confocal microscopy and real-time PCR of flow cytometry-sorted cells were used to measure cell surface S100A8/A9, intracellular S100A8/A9 and mRNA levels of S100A8 and S100A9, respectively. Results: Cell surface S100A8/A9 was detected on all leukocyte subpopulations investigated except for T cells. By confocal microscopy, real-time PCR and stimulation assays, we could demonstrate that pDCs, monocytes and PMNs could synthesize S100A8/A9. Furthermore, pDC cell surface S100A8/A9 was higher in patients with active disease as compared to patients with inactive disease. Upon immune complex stimulation, pDCs up-regulated the cell surface S100A8/A9. SLE patients had also increased serum levels of S100A8/A9. Conclusions: Patients with SLE had increased cell surface S100A8/A9, which could be important in amplification and persistence of inflammation. Importantly, pDCs were able to synthesize S100A8/A9 proteins and up-regulate the cell surface expression upon immune complex-stimulation. Thus, S100A8/A9 may be a potent target for treatment of inflammatory diseases such as SLE
IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus
BACKGROUND: Most patients with systemic lupus erythematosus (SLE) have IgG autoantibodies against the RNA-binding p40 (ORF1p) protein encoded by the L1 retroelement. This study tested if these autoantibodies are also present in children with pediatric SLE (pSLE) and if the p40 protein itself could be detected in immune cells. METHODS: Autoantibodies in the plasma of pSLE patients (n = 30), healthy children (n = 37), and disease controls juvenile idiopathic arthritis (JIA) (n = 32) and juvenile dermatomyositis (JDM) (n = 60), were measured by ELISA. Expression of p40 in immune cells was assessed by flow cytometry. Markers of neutrophil activation and death were quantitated by ELISA. RESULTS: IgG and IgA autoantibodies reactive with p40 were detected in the pSLE patients, but were low in healthy controls and in JIA or JDM. pSLE patients with active disease (13 of them newly diagnosed) had higher titers than the same patients after effective therapy (p = 0.0003). IgG titers correlated with SLEDAI (r = 0.65, p = 0.0001), ESR (r = 0.43, p = 0.02), and anti-dsDNA antibodies (r = 0.49, p < 0.03), and inversely with complement C3 (r = -0.55, p = 0.002) and C4 (r = -0.51, p = 0.006). p40 protein was detected in a subpopulation of CD66b(+) granulocytes in pSLE, as well as in adult SLE patients. Myeloperoxidase and neutrophil elastase complexed with DNA and the neutrophil-derived S100A8/A9 were elevated in plasma from pSLE patients with active disease and correlated with anti-p40 autoantibodies and disease activity. CONCLUSIONS: Children with active SLE have elevated IgG and IgA autoantibodies against L1 p40, and this protein can be detected in circulating granulocytes in both pediatric and adult SLE patients. P40 expression and autoantibody levels correlate with disease activity. Markers of neutrophil activation and death also correlate with these autoantibodies and with disease activity, suggesting that neutrophils express L1 and are a source of p40. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02538-3
Recombinant human complement component C2 produced in a human cell line restores the classical complement pathway activity in-vitro: an alternative treatment for C2 deficiency diseases
Background: Complement C2 deficiency is the most common genetically determined complete complement deficiency and is associated with a number of diseases. Most prominent are the associations with recurrent serious infections in young children and the development of systemic lupus erythematosus (SLE) in adults. The links with these diseases reflect the important role complement C2 plays in both innate immunity and immune tolerance. Infusions with normal fresh frozen plasma for the treatment of associated disease have demonstrated therapeutic effects but so far protein replacement therapy has not been evaluated. Results: Human complement C2 was cloned and expressed in a mammalian cell line. The purity of recombinant human C2 (rhC2) was greater than 95% and it was characterized for stability and activity. It was sensitive to C1s cleavage and restored classical complement pathway activity in C2-deficient serum both in a complement activation ELISA and a hemolytic assay. Furthermore, rhC2 could increase C3 fragment deposition on the human pathogen Streptococcus pneumoniae in C2-deficient serum to levels equal to those with normal serum. Conclusions: Taken together these data suggest that recombinant human C2 can restore classical complement pathway activity and may serve as a potential therapeutic for recurring bacterial infections or SLE in C2-deficient patients
- …