1,476 research outputs found
Belief heterogeneity and survival in incomplete markets
In complete markets economies (Sandroni [16]), or in economies with Pareto optimal outcomes (Blume and Easley [10]), the market selection hypothesis holds, as long as traders have identical discount factors. Traders who survive must have beliefs that merge with the truth. We show that in incomplete markets, regardless of traders’ discount factors, the market selects for a range of beliefs, at least some of which do not merge with the truth. We also show that impatient traders with incorrect beliefs can survive and that these incorrect beliefs impact prices. These beliefs may be chosen so that they are far from the truth
X-ray standing wave and reflectometric characterization of multilayer structures
Microstructural characterization of synthetic periodic multilayers by x-ray
standing waves have been presented. It has been shown that the analysis of
multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW)
techniques can overcome the deficiencies of the individual techniques in
microstructural analysis. While interface roughnesses are more accurately
determined by the XRR technique, layer composition is more accurately
determined by the XSW technique where an element is directly identified by its
characteristic emission. These aspects have been explained with an example of a
20 period Pt/C multilayer. The composition of the C-layers due to Pt
dissolution in the C-layers, PtC, has been determined by the XSW
technique. In the XSW analysis when the whole amount of Pt present in the
C-layers is assumed to be within the broadened interface, it l eads to larger
interface roughness values, inconsistent with those determined by the XRR
technique. Constraining the interface roughness values to those determined by
the XRR technique, requires an additional amount of dissolved Pt in the
C-layers to expl ain the Pt fluorescence yield excited by the standing wave
field. This analysis provides the average composition PtC of the
C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
The spectral gap for some spin chains with discrete symmetry breaking
We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant
finite-range Hamiltonian for which this set is the set of ground states. This
result implies that there are GVBS models with arbitrary broken discrete
symmetries that are described as combinations of lattice translations, lattice
reflections, and local unitary or anti-unitary transformations. We also show
that all GVBS models that satisfy some natural conditions have a spectral gap.
The existence of a spectral gap is obtained by applying a simple and quite
general strategy for proving lower bounds on the spectral gap of the generator
of a classical or quantum spin dynamics. This general scheme is interesting in
its own right and therefore, although the basic idea is not new, we present it
in a system-independent setting. The results are illustrated with an number of
examples.Comment: 48 pages, Plain TeX, BN26/Oct/9
The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices
The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is
examined to extract the Hamiltonian limit, using standard path integral Monte
Carlo (PIMC) methods. We examine the mean plaquette and string tension and
compare them to results obtained within the Hamiltonian framework of Kogut and
Susskind. The results are a significant improvement upon previous Hamiltonian
estimates, despite the extrapolation procedure necessary to extract
observables. We conclude that the PIMC method is a reliable method of obtaining
results for the Hamiltonian version of the theory. Our results also clearly
demonstrate the universality between the Hamiltonian and Euclidean formulations
of lattice gauge theory. It is particularly important to take into account the
renormalization of both the anisotropy, and the Euclidean coupling ,
in obtaining these results.Comment: 10 pages, 11 figure
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Time-Dependent CP Violation Effects in Partially Reconstructed Decays
We report measurements of time-dependent decay rates for decays and extraction of CP violation parameters related to .
We use a partial reconstruction technique, whereby signal events are identified
using information only from the primary pion and the charged pion from the
decay of the . The analysis uses of data
accumulated at the resonance with the Belle detector at the KEKB
asymmetric-energy collider. We measure the CP violation parameters
and .Comment: 15 pages, 5 figures. To appear in Physics Letters
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
- …