59 research outputs found
The LOFAR Magnetism Key Science Project
Measuring radio waves at low frequencies offers a new window to study cosmic
magnetism, and LOFAR is the ideal radio telescope to open this window widely.
The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from
multiple fields of magnetism science and intends to use LOFAR to tackle
fundamental questions on cosmic magnetism by exploiting a variety of
observational techniques. Surveys will provide diffuse emission from the Milky
Way and from nearby galaxies, tracking the propagation of long-lived cosmic-ray
electrons through magnetic field structures, to search for radio halos around
spiral and dwarf galaxies and for magnetic fields in intergalactic space.
Targeted deep-field observations of selected nearby galaxies and suspected
intergalactic filaments allow sensitive mapping of weak magnetic fields through
Rotation Measure (RM) grids. High-resolution observations of protostellar jets
and giant radio galaxies reveal structures on small physical scales and at high
redshifts, whilst pulsar RMs map large-scale magnetic structures of the
Galactic disk and halo in revolutionary detail. The MKSP is responsible for the
development of polarization calibration and processing, thus widening the
scientific power of LOFAR.Comment: Proceedings of "Magnetic Fields in the Universe: From Laboratory and
Stars to Primordial Structures", 2011 Aug. 21-27 in Zakopane/Poland, eds. M.
Soida et a
Improved source localization with LIGO India
A global network of advanced gravitational wave interferometric detectors is
under construction. These detectors will offer an order of magnitude
improvement in sensitivity over the initial detectors and will usher in the era
of gravitational wave astronomy. In this paper, we evaluate the benefits of
relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of
ICGC2011 conference. Localization figures update
First LOFAR results on galaxy clusters
Deep radio observations of galaxy clusters have revealed the existence of
diffuse radio sources related to the presence of relativistic electrons and
weak magnetic fields in the intracluster volume. The role played by this
non-thermal intracluster component on the thermodynamical evolution of galaxy
clusters is debated, with important implications for cosmological and
astrophysical studies of the largest gravitationally bound structures of the
Universe. The low surface brightness and steep spectra of diffuse cluster radio
sources make them more easily detectable at low-frequencies. LOFAR is the first
instrument able to detect diffuse radio emission in hundreds of massive galaxy
clusters up to their formation epoch. We present the first observations of
clusters imaged by LOFAR and the huge perspectives opened by this instrument
for non-thermal cluster studies.Comment: Proceedings of the 2012 week of the French Society of Astronomy and
Astrophysics (SF2A) held in Nice, June 5th-8t
- …
