59 research outputs found

    The LOFAR Magnetism Key Science Project

    Full text link
    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to tackle fundamental questions on cosmic magnetism by exploiting a variety of observational techniques. Surveys will provide diffuse emission from the Milky Way and from nearby galaxies, tracking the propagation of long-lived cosmic-ray electrons through magnetic field structures, to search for radio halos around spiral and dwarf galaxies and for magnetic fields in intergalactic space. Targeted deep-field observations of selected nearby galaxies and suspected intergalactic filaments allow sensitive mapping of weak magnetic fields through Rotation Measure (RM) grids. High-resolution observations of protostellar jets and giant radio galaxies reveal structures on small physical scales and at high redshifts, whilst pulsar RMs map large-scale magnetic structures of the Galactic disk and halo in revolutionary detail. The MKSP is responsible for the development of polarization calibration and processing, thus widening the scientific power of LOFAR.Comment: Proceedings of "Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures", 2011 Aug. 21-27 in Zakopane/Poland, eds. M. Soida et a

    Improved source localization with LIGO India

    Full text link
    A global network of advanced gravitational wave interferometric detectors is under construction. These detectors will offer an order of magnitude improvement in sensitivity over the initial detectors and will usher in the era of gravitational wave astronomy. In this paper, we evaluate the benefits of relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of ICGC2011 conference. Localization figures update

    First LOFAR results on galaxy clusters

    Full text link
    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. The role played by this non-thermal intracluster component on the thermodynamical evolution of galaxy clusters is debated, with important implications for cosmological and astrophysical studies of the largest gravitationally bound structures of the Universe. The low surface brightness and steep spectra of diffuse cluster radio sources make them more easily detectable at low-frequencies. LOFAR is the first instrument able to detect diffuse radio emission in hundreds of massive galaxy clusters up to their formation epoch. We present the first observations of clusters imaged by LOFAR and the huge perspectives opened by this instrument for non-thermal cluster studies.Comment: Proceedings of the 2012 week of the French Society of Astronomy and Astrophysics (SF2A) held in Nice, June 5th-8t
    corecore