1,609 research outputs found

    Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge

    Full text link
    © 2019, Springer Nature B.V. This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies

    Effects of operational disturbance and subsequent recovery process on microbial community during a pilot-scale anaerobic co-digestion

    Full text link
    © 2019 This study investigated changes in microbial community structure and composition in response to operational disturbance and subsequent process recovery by inoculum addition. Amplicon sequencing of 16S rRNA and mcrA marker genes on the Illumina Miseq platform was used for microbial community analysis. The results show that imbalance among core microbial groups caused volatile fatty acid accumulation and subsequent deteriorated biogas production (decreased by 45% of daily volume) and methane content (57% of the total abundance) and reduction of acetogenic and methanogenic microbes (they accounted for <9% and <3% of the total abundance, respectively). Acetogens and methanogens were replenished by inoculum addition to recover digester performance. Although digester performances were similar in stable (prior to disturbance) and post recovery phases, the microbial community did not return to the original state, suggesting the existence of functional redundancy in the community

    Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris

    Full text link
    © 2020 Elsevier B.V. The flocculation efficiency of microalgae Chlorella vulgaris for subsequent harvesting was investigated using single flocculants of inorganic salts, synthetic polymer, chitosan and dual flocculants of inorganic salts and chitosan. Synthetic polymer (FlopamTM) could achieve over 90% optical density removal (OD680removal) at a low flocculant dose (20 to 40 mg polymer per litre of algal suspension) through the bridging mechanism and charge neutralisation. Inorganic salts (i.e. ferric chloride and aluminium sulphate) and chitosan individually resulted in low flocculation efficiency (80% flocculation efficiency, significantly higher than the sum of each individual flocculation. The improvement in flocculation efficiency was 57 and 24% respectively for ferric chloride/chitosan and aluminium sulphate/chitosan. Charge neutralisation of microalgal cells by ferric chloride or aluminium sulphate combined with bridging by chitosan produced the synergy

    Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass

    Full text link
    © 2019 Elsevier Ltd This study investigated the production of biogas, volatile fatty acids (VFAs), and other soluble organic from lignocellulosic biomass by two microbial communities (i.e. rumen fluid and anaerobic sludge). Four types of abundant lignocellulosic biomass (i.e. wheat straw, oaten hay, lurence hay and corn silage)found in Australia were used. The results show that rumen microbes produced four-time higher VFAs level than that of anaerobic sludge reactors, indicating the possible application of rumen microorganism for VFAs generation from lignocellulosic biomass. VFA production in the rumen fluid reactors was probably due to the presence of specific hydrolytic and acidogenic bacteria (e.g. Fibrobacter and Prevotella). VFA production corroborated from the observation of pH drop in the rumen fluid reactors indicated hydrolytic and acidogenic inhibition, suggesting the continuous extraction of VFAs from the reactor. Anaerobic sludge reactors on the other hand, produced more biogas than that of rumen fluid reactors. This observation was consistent with the abundance of methanogens in anaerobic sludge inoculum (3.98% of total microbes)compared to rumen fluid (0.11%). VFA production from lignocellulosic biomass is the building block chemical for bioplastic, biohydrogen and biofuel. The results from this study provide important foundation for the development of engineered systems to generate VFAs from lignocellulosic biomass

    Selection of microalgae strains for sustainable production of aviation biofuel.

    Full text link
    This study develops and applies the PROMETHEE-GAIA method as a new tool to select microalgae strains for aviation fuel production. Assessment involves 19 criteria with equal weighting in three aspects, namely biomass production, lipid quality, and fatty acid methylester properties. Here, the method is demonstrated for evaluating 17 candidate microalgae strains. Chlorella sp. NT8a is assessed as the most suitable strain for aviation fuel production. The results also show that unmodified biofuel from the most suitable strain could not meet all jet fuel standards. In particular, microalgae-based fuel could not satisfy the required density, heating value and freezing points of the international jet fuel standards. These results highlight the need for a broad action plan including improvement in the processing or modification of biofuel produced from microalgae and revision of the current jet fuel standards to facilitate the introduction of microalgae-based biofuel for the aviation industry

    Factors governing microalgae harvesting efficiency by flocculation using cationic polymers.

    Full text link
    This study aims to elucidate the mechanisms governing the harvesting efficiency of Chlorella vulgaris by flocculation using a cationic polymer. Flocculation efficiency increased as microalgae culture matured (i.e. 35-45, 75, and > 97% efficiency at early, late exponential, and stationary phase, respectively. Unlike the negative impact of phosphate on flocculation in traditional wastewater treatment; here, phosphorous residue did not influence the flocculation efficiency of C. vulgaris. The observed dependency of flocculation efficiency on growth phase was driven by changes in microalgal cell properties. Microalgal extracellular polymeric substances (EPS) in both bound and free forms at stationary phase were two and three times higher than those at late and early exponential phase, respectively. Microalgae cells also became more negatively charged as they matured. Negatively charged and high EPS content together with the addition of high molecular weight and positively charged polymer could facilitate effective flocculation via charge neutralisation and bridging

    A Novel Approach in Crude Enzyme Laccase Production and Application in Emerging Contaminant Bioremediation

    Full text link
    Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 µM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 µM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six groups). The EMR effectively removed of steroid hormones, phytoestrogen, ultraviolet (UV) filters and industrial chemical (above 90%). However, it had low removal of pesticides and pharmaceuticals.</jats:p

    Simultaneous nutrient recovery and algal biomass production from anaerobically digested sludge centrate using a membrane photobioreactor.

    Full text link
    This study aims to evaluate the performance of C. vulgaris microalgae to simultaneously recover nutrients from sludge centrate and produce biomass in a membrane photobioreactor (MPR). Microalgae growth and nutrient removal were evaluated at two different nutrient loading rates (sludge centrate). The results show that C. vulgaris microalgae could thrive in sludge centrate. Nutrient loading has an indiscernible impact on biomass growth and a notable impact on nutrient removal efficiency. Nutrient removal increased as the nutrient loading rate decreased and hydraulic retention time increased. There was no membrane fouling observed in the MPR and the membrane water flux was fully restored by backwashing using only water. However, the membrane permeability varies with the hydraulic retention time (HRT) and biomass concentration in the reactor. Longer HRT offers higher permeability. Therefore, it is recommended to operate the MPR system in lower HRT to improve the membrane resistance and energy consumption

    Impacts of mixing on foaming, methane production, stratification and microbial community in full-scale anaerobic co-digestion process

    Full text link
    © 2019 Elsevier Ltd This study investigated the impact of mixing on key factors including foaming, substrate stratification, methane production and microbial community in three full scale anaerobic digesters. Digester foaming was observed at one plant that co-digested sewage sludge and food waste, and was operated without mixing. The lack of mixing led to uneven distribution of total chemical oxygen demand (tCOD) and volatile solid (VS) as well as methane production within the digester. 16S rRNA gene-based community analysis clearly differentiated the microbial community from the top and bottom. By contrast, foaming and substrate stratification were not observed at the other two plants with internal circulation mixing. The abundance of methanogens (Methanomicrobia) at the top was about four times higher than at the bottom, correlating to much higher methane production from the top verified by ex-situ biomethane assay, causing foaming. This result is consistent with foaming potential assessment of digestate samples from the digester

    New insights to the difference in microbial composition and interspecies interactions between fouling layer and mixed liquor in a membrane bioreactor

    Full text link
    This work examined fouling-associated microbial community in a carefully controlled laboratory-scale membrane bioreactor (MBR) at different fouling stages. In agreement with the literature, fouling severity was positively correlated with bound polysaccharide and protein content (indicators) in the mixed liquor. UPGMA clustering analysis with different indices indicated that although the biofouling layer (biofilm) and mixed liquor possessed highly similar microbial identity, important differences between the two communities' structures were also observed. This appears to be the first comprehensive study to apply differential abundance analysis (ANCOM) to identify microbial taxa driven the divergence in microbial structure including Victivallales, Coxiellales, unassigned Microgenomatia and Blastocatellia 11–24 (all presented at 0.6) with fouling indicators, confirming their important contributions to fouling propensity. The biofilm community exhibited a more complex structure with higher level of inter-species interaction and prevalence of positive connections (74.6%) compared to the mixed liquor community (42.2%), reflecting higher stability and synergy between microbial taxa in the biofilm. Results from this comprehensive investigation can support the development of new fouling control strategies
    • …
    corecore