5 research outputs found

    Adaptive Response in Mice Exposed to 900 MHz Radiofrequency Fields: Primary DNA Damage

    Get PDF
    The phenomenon of adaptive response (AR) in animal and human cells exposed to ionizing radiation is well documented in scientific literature. We have examined whether such AR could be induced in mice exposed to non-ionizing radiofrequency fields (RF) used for wireless communications. Mice were pre-exposed to 900 MHz RF at 120 µW/cm2 power density for 4 hours/day for 1, 3, 5, 7 and 14 days and then subjected to an acute dose of 3 Gy γ-radiation. The primary DNA damage in the form of alkali labile base damage and single strand breaks in the DNA of peripheral blood leukocytes was determined using the alkaline comet assay. The results indicated that the extent of damage in mice which were pre-exposed to RF for 1 day and then subjected to γ-radiation was similar and not significantly different from those exposed to γ-radiation alone. However, mice which were pre-exposed to RF for 3, 5, 7 and 14 days showed progressively decreased damage and was significantly different from those exposed to γ-radiation alone. Thus, the data indicated that RF pre-exposure is capable of inducing AR and suggested that the pre-exposure for more than 4 hours for 1 day is necessary to elicit such AR

    CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?

    No full text
    OBJECTIVE: To define thresholds of safe local temperature increases for MR equipment that exposes patients to radiofrequency fields of high intensities for long duration. These MR systems induce heterogeneous energy absorption patterns inside the body and can create localised hotspots with a risk of overheating. METHODS: The MRI + EUREKA research consortium organised a “Thermal Workshop on RF Hotspots”. The available literature on thresholds for thermal damage and the validity of the thermal dose (TD) model were discussed. RESULTS/CONCLUSIONS: 1. All persons: maximum local temperature of any tissue limited to 39 °C. 2. : a. Uncontrolled conditions: maximum local temperature limited to 39 °C. b. Controlled conditions: TD<2 CEM43°C. 3. : a. Uncontrolled conditions: TD<2 CEM43°C. b. Controlled conditions: TD<9 CEM43°C. The following definitions are applied: [Table: see text

    Lithography

    No full text
    corecore