4 research outputs found

    Vascular disrupting agents in clinical development

    Get PDF
    Growth of human tumours depends on the supply of oxygen and nutrients via the surrounding vasculature. Therefore tumour vasculature is an attractive target for anticancer therapy. Apart from angiogenesis inhibitors that compromise the formation of new blood vessels, a second class of specific anticancer drugs has been developed. These so-called vascular disrupting agents (VDAs) target the established tumour vasculature and cause an acute and pronounced shutdown of blood vessels resulting in an almost complete stop of blood flow, ultimately leading to selective tumour necrosis. As a number of VDAs are now being tested in clinical studies, we will discuss their mechanism of action and the results obtained in preclinical studies. Also data from clinical studies will be reviewed and some considerations with regard to the future development are given

    The influence of the combined treatment with Vadimezan (ASA404) and taxol on the growth of U251 glioblastoma xenografts

    No full text
    <p>Abstract</p> <p>Background</p> <p>One of the most important biological characteristics of Glioblastoma multiforme (GBM) is high vascular density. Vadimezan (ASA404, DMXAA) belongs to the class of small molecule vascular disrupting agents (VDA) that cause disruption of established tumor vessels and subsequent tumor hemorrhagic necrosis. Its selective antivascular effect is mediated by intratumoral induction of several cytokines including tumor necrosis factor-α (TNF-α), granulocyte-colony-stimulating factor (G-CSF), interleukin 6 (IL-6) and macrophage inflammatory protein 1α (MIP-1α). Preclinical studies have demonstrated that ASA404 acts synergistically with taxanes. In this study, we investigated if treatment of mice bearing U251 human glioblastoma xenografts with ASA404 and taxol may be synergistic. Therapy response was evaluated by measuring changes in tumor size and metabolic activity using <sup>18</sup>F-FDG PET (Fluorodeoxyglucose - positron emision tomography) imaging.</p> <p>Methods</p> <p>U251 cells were inoculated s.c. in the right hind limb of NMRI-Foxn1<sup>nu</sup> athymic female nude mice. Animals were randomly assigned into 4 groups (7–9 animals/group) for treatment: control, taxol, ASA404, and ASA404 plus taxol. The animals received either a single dose of taxol (10 mg/kg), ASA404 (27.5 mg/kg), or taxol (10 mg/kg) plus ASA404 (27.5 mg/kg) administered i.p.; ASA404 was administred 24 h after the treatment with taxol. 4 and 24 h after treatment with ASA404 (28 and 48 h hours after treatment with taxol) <sup>18</sup> F-FDG PET scans were performed.</p> <p>Results</p> <p>The treatment with taxol did not affect the tumor growth in comparison to untreated controls. The treatment of animals with single dose ASA404 alone or in combination with taxol caused a significant delay in tumor growth. The combined treatment did not decrease the growth of the xenografts significantly more than ASA404 alone, but early changes in tumor <sup>18</sup> F-FDG uptake preceded subsequent growth inhibition. The tumor weights, which were determined at the end of treatment, were lower in case of combined treatment.</p> <p>Conclusions</p> <p>The treatment with ASA404 alone or in combination with taxol showed antitumoral effects in our glioblastoma model probably through destruction of blood vessels. The implications for the anticancer effect of this compound warrant further preclinical studies. <sup>18</sup>F-FDG PET appears to be a promising tool to monitor treatment with ASA404 early in the course of therapy.</p
    corecore