59 research outputs found

    Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein and mRNA levels for several selenoproteins, such as glutathione peroxidase-1 (Gpx1), are down-regulated dramatically by selenium (Se) deficiency. These levels in rats increase sigmoidally with increasing dietary Se and reach defined plateaus at the Se requirement, making them sensitive biomarkers for Se deficiency. These levels, however, do not further increase with super-nutritional or toxic Se status, making them ineffective for detection of high Se status. Biomarkers for high Se status are needed as super-nutritional Se intakes are associated with beneficial as well as adverse health outcomes. To characterize Se regulation of the transcriptome, we conducted 3 microarray experiments in weanling mice and rats fed Se-deficient diets supplemented with up to 5 μg Se/g diet.</p> <p>Results</p> <p>There was no effect of Se status on growth of mice fed 0 to 0.2 μg Se/g diet or rats fed 0 to 2 μg Se/g diet, but rats fed 5 μg Se/g diet showed a 23% decrease in growth and elevated plasma alanine aminotransferase activity, indicating Se toxicity. Rats fed 5 μg Se/g diet had significantly altered expression of 1193 liver transcripts, whereas mice or rats fed ≤ 2 μg Se/g diet had < 10 transcripts significantly altered relative to Se-adequate animals within an experiment. Functional analysis of genes altered by Se toxicity showed enrichment in cell movement/morphogenesis, extracellular matrix, and development/angiogenesis processes. Genes up-regulated by Se deficiency were targets of the stress response transcription factor, Nrf2. Multiple regression analysis of transcripts significantly altered by 2 μg Se/g and Se-deficient diets identified an 11-transcript biomarker panel that accounted for 99% of the variation in liver Se concentration over the full range from 0 to 5 μg Se/g diet.</p> <p>Conclusion</p> <p>This study shows that Se toxicity (5 μg Se/g diet) in rats vastly alters the liver transcriptome whereas Se-deficiency or high but non-toxic Se intake elicits relatively few changes. This is the first evidence that a vastly expanded number of transcriptional changes itself can be a biomarker of Se toxicity, and that identified transcripts can be used to develop molecular biomarker panels that accurately predict super-nutritional and toxic Se status.</p

    Multicomponent analysis of T1 relaxation in bovine articular cartilage at low magnetic fields

    Get PDF
    European Union’s Horizon 2020 Research and Innovation Programme; Grant/Award number 668119 (project “IDentIFY”).Peer reviewedPublisher PD

    Distinctive features of the microbiota associated with different forms of apical periodontitis

    Get PDF
    Microorganisms infecting the dental root canal system play an unequivocal role as causative agents of apical periodontitis. Although fungi, archaea, and viruses have been found in association with some forms of apical periodontitis, bacteria are the main microbial etiologic agents of this disease. Bacteria colonizing the root canal are usually organized in communities similar to biofilm structures. Culture and molecular biology technologies have demonstrated that the endodontic bacterial communities vary in species richness and abundance depending on the different types of infection and different forms of apical periodontitis. This review paper highlights the distinctive features of the endodontic microbiota associated with diverse clinical conditions

    Amyloids - A functional coat for microorganisms

    Get PDF
    Amyloids are filamentous protein structures ~10 nm wide and 0.1–10 µm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.
    corecore