3 research outputs found

    Serum Response Factor Regulates Immediate Early Host Gene Expression in Toxoplasma gondii-Infected Host Cells

    Get PDF
    Toxoplasma gondii is a wide spread pathogen that can cause severe and even fatal disease in fetuses and immune-compromised hosts. As an obligate intracellular parasite, Toxoplasma must alter the environment of its host cell in order to establish its replicative niche. This is accomplished, in part, by secretion of factors into the host cell that act to modulate processes such as transcription. Previous studies demonstrated that genes encoding transcription factors such as c-jun, junB, EGR1, and EGR2 were amongst the host genes that were the most rapidly upregulated following infection. In cells stimulated with growth factors, these genes are regulated by a transcription factor named Serum Response Factor. Serum Response Factor is a ubiquitously expressed DNA binding protein that regulates growth and actin cytoskeleton genes via MAP kinase or actin cytoskeletal signaling, respectively. Here, we report that Toxoplasma infection leads to the rapid activation of Serum Response Factor. Serum Response Factor activation is a Toxoplasma-specific event since the transcription factor is not activated by the closely related protozoan parasite, Neospora caninum. We further demonstrate that Serum Response Factor activation requires a parasite-derived secreted factor that signals via host MAP kinases but independently of the host actin cytoskeleton. Together, these data define Serum Response Factor as a host cell transcription factor that regulates immediate early gene expression in Toxoplasma-infected cells

    Variations in TcdB Activity and the Hypervirulence of Emerging Strains of Clostridium difficile

    Get PDF
    Hypervirulent strains of Clostridium difficile have emerged over the past decade, increasing the morbidity and mortality of patients infected by this opportunistic pathogen. Recent work suggested the major C. difficile virulence factor, TcdB, from hypervirulent strains (TcdBHV) was more cytotoxic in vitro than TcdB from historical strains (TcdBHIST). The current study investigated the in vivo impact of altered TcdB tropism, and the underlying mechanism responsible for the differences in activity between the two forms of this toxin. A combination of protein sequence analyses, in vivo studies using a Danio rerio model system, and cell entry combined with fluorescence assays were used to define the critical differences between TcdBHV and TcdBHIST. Sequence analysis found that TcdB was the most variable protein expressed from the pathogenicity locus of C. difficile. In line with these sequence differences, the in vivo effects of TcdBHV were found to be substantially broader and more pronounced than those caused by TcdBHIST. The increased toxicity of TcdBHV was related to the toxin's ability to enter cells more rapidly and at an earlier stage in endocytosis than TcdBHIST. The underlying biochemical mechanism for more rapid cell entry was identified in experiments demonstrating that TcdBHV undergoes acid-induced conformational changes at a pH much higher than that of TcdBHIST. Such pH-related conformational changes are known to be the inciting step in membrane insertion and translocation for TcdB. These data provide insight into a critical change in TcdB activity that contributes to the emerging hypervirulence of C. difficile
    corecore