18 research outputs found

    Resolution of cast nephropathy following free light chain removal by haemodialysis in a patient with multiple myeloma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute renal failure in multiple myeloma is most frequently caused by cast nephropathy, when excess monoclonal free light chains co-precipitate with Tamm-Horsfall protein in the distal nephron, causing tubular obstruction. The natural history of cast nephropathy after diagnosis is unknown. This report provides supporting histological evidence that, as serum free light chain concentrations fall, intratubular casts may resolve within weeks.</p> <p>Case presentation</p> <p>We report the case of a 61-year-old Caucasian woman who presented with multiple myeloma and dialysis-dependent acute renal failure, with serum kappa free light chain concentrations of 15,700 mg/litre (normal range 3.3 to 19.4 mg/litre). Renal biopsy demonstrated cast nephropathy with waxy casts in distal tubules and collecting ducts. There was an interstitial inflammatory cell infiltrate with diffuse fibrosis and tubular atrophy. Following rehydration, chemotherapy and free light chain removal using high cut-off haemodialysis, free light chain concentrations fell to less than 5% of the starting level (500 mg/litre). A repeat renal biopsy 6 weeks after the first showed resolution of cast nephropathy.</p> <p>Conclusion</p> <p>These observations indicate that cast nephropathy can quickly resolve on rapid reduction of monoclonal serum free light chains. This has important implications for the development of treatment strategies aimed at improving renal recovery rates for patients in this setting.</p

    Correlative light and electron microscopy of wall formation in Eimeria nieschulzi

    No full text
    Coccidian parasites possess complex life cycles involving asexual proliferation followed by sexual development leading to the production of oocysts. Coccidian oocysts are persistent stages which are secreted by the feces and transmitted from host to host guaranteeing life cycle progression and disease transmission. The robust bilayered oocyst wall is formed from the contents of two organelles, the wall-forming bodies type I and II (WFBI, WFBII), located exclusively in the macrogametocyte. Eimeria nieschulzi has been used as a model parasite to study and follow gametocyte and oocyst development. In this study, the gametocyte and oocyst wall formation of E. nieschulzi was analyzed by electron microscopy and immuno-histology. A monoclonal antibody raised against the macrogametocytes of E. nieschulzi identified a tyrosine-rich glycoprotein (EnGAM82) located in WFBII. Correlative light and electron microscopy was used to examine the vesicle-specific localization and spatial distribution of GAM82-proteins during macrogametocyte maturation by this monoclonal antibody. In early and mid-stages, the GAM82-protein is ubiquitously distributed in WFBII. Few hours later, the protein is arranged in subvesicular structures. It was possible to show that the substructure of WFBII and the spatial distribution of GAM82-proteins probably represent pre-synthesized cross-linked materials prior to the inner oocyst wall formation. Dityrosine-cross-linked gametocyte proteins can also be confirmed and visualized by fluorescence microscopy (UV light, autofluorescence of WFBII)
    corecore