28 research outputs found

    Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    Get PDF
    BACKGROUND: Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. METHODS: Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2(CEA), mGC4(CEA), mGC11(CEA)). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. RESULTS: The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts. Although no spontaneous tumor rejection was observed, vaccination of C57BL/6 mice with lysates from gastric carcinoma cell lines protected C57BL/6 mice from tumor challenge, demonstrating the tumorigenicity of the tumor cell lines in nontransgenic mice of the H-2(b )haplotype. CONCLUSION: These tumor cell lines grafted in different syngeneic hosts should prove to be very useful to optimize immunotherapy regimens to be finally tested in transgenic animals developing primary gastric carcinomas

    Characterization of highly frequent epitope-specific CD45RA(+)/CCR7(+/- )T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors

    Get PDF
    Human polyomavirus BK (BKV) has been implicated in oncogenic transformation. Its ability to replicate is determined by the binding of its large tumor antigen (LTag) to products of tumor-suppressor genes regulating cell cycle, as specifically p53. We investigated CD8+ T immune responses to BKV LTag portions involved in p53 binding in HLA-A*0201+ BKV LTag experienced individuals. Peptides selected from either p53-binding region (LTag(351–450 )and LTag(533–626)) by current algorithms and capacity to bind HLA-A*0201 molecule were used to stimulate CD8+ T responses, as assessed by IFN-γ gene expression ex vivo and detected by cytotoxicity assays following in vitro culture. We observed epitope-specific immune responses in all HLA-A*0201+ BKV LTag experienced individuals tested. At least one epitope, LTag(579–587); LLLIWFRPV, was naturally processed in non professional antigen presenting cells and induced cytotoxic responses with CTL precursor frequencies in the order of 1/20'000. Antigen specific CD8+ T cells were only detectable in the CD45RA+ subset, in both CCR7+ and CCR7- subpopulations. These data indicate that widespread cellular immune responses against epitopes within BKV LTag-p53 binding regions exist and question their roles in immunosurveillance against tumors possibly associated with BKV infection

    Species-dependent variations in erythrocyte membrane skeletal proteins

    No full text

    Quality assessment of autografting by probability evaluation: model estimation by clinical end-points in newly diagnosed multiple myeloma patients

    No full text
    Background Pre-transplant clinical evaluation of autografting is an important step in predicting post-transplant support, complications and safety. Today, unfavorable outcomes such as early death or graft failure are rare, making them unsuitable for quality assessment of supportive autografting. However, end-points constructed from frequently occurring clinical events may estimate clinically relevant prognostic models. Methods The present retrospective analysis was based on two consecutive clinical trials in the Nordic area, including up to 640 newly diagnosed multiple myeloma patients. Results In the model, the efficacy (time on antibiotics and use of transfusions) was influenced by pre-transplant variables, including sex, nationality, serum creatinine, hemoglobin, disease stage at diagnosis, response following induction therapy, length of priming and average graft CD34(+) cell number per day of harvest. The toxicity end-point (time to blood cell recovery) was influenced by nationality, marrow plasma cell percentage, serum creatinine, M-component isotype, response to induction therapy, length of priming and graft CD34(+) cell number. The safety (early disease recurrence or death) was influenced by serum creatinine, hemoglobin, treatment response and CD34(+) cell number. Discussion In conclusion, the model illustrates that intervention strategies in quality assessment of autografting may benefit from probability estimates of graded clinical end-points

    Production of human caseinomacropeptide in recombinant Saccharomyces cerevisiae and Pichia pastoris

    No full text
    Caseinomacropeptide is a polypeptide of 64 amino acid residues (106-169) derived from the C-terminal part of the mammalian milk k-casein. This macropeptide has various biological activities and is used as a functional food ingredient as well as a pharmaceutical compound. The gene encoding the human caseinomacropeptide (hCMP) was synthesized and expressed with an alpha-factor secretion signal in the two yeast strains, Saccharomyces cerevisiae and Pichia pastoris. The complete polypeptide of the recombinant hCMP was produced and secreted in a culture medium by both the strains, but the highest production was observed in S. cerevisiae with a galactose-inducible promoter. In a fed-batch bioreactor culture, 2.5 g/l of the recombinant hCMP was obtained from the S. cerevisiae at 97 h
    corecore