26 research outputs found

    Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome

    Get PDF
    Microcephaly–capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor–mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome

    Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature

    Get PDF
    Purpose: We conducted a systematic literature review to summarize the current health economic evidence for whole-exome sequencing (WES) and whole-genome sequencing (WGS).Methods: Relevant studies were identified in the EMBASE, MEDLINE, Cochrane Library, EconLit and University of York Centre for Reviews and Dissemination databases from January 2005 to July 2016. Publications were included in the review if they were economic evaluations, cost studies, or outcome studies.Results: Thirty-six studies met our inclusion criteria. These publications investigated the use of WES and WGS in a variety of genetic conditions in clinical practice, the most common being neurological or neurodevelopmental disorders. Study sample size varied from a single child to 2,000 patients. Cost estimates for a single test ranged from 555to555 to 5,169 for WES and from 1,906to1,906 to 24,810 for WGS. Few cost analyses presented data transparently and many publications did not state which components were included in cost estimates.Conclusion: The current health economic evidence base to support the more widespread use of WES and WGS in clinical practice is very limited. Studies that carefully evaluate the costs, effectiveness, and cost-effectiveness of these tests are urgently needed to support their translation into clinical practice

    A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures

    Full text link
    © 2018 Elsevier Inc. Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes. Different dosages of an RNA-binding protein result in human neurological diseases of corresponding severities
    corecore