76 research outputs found

    Crouching Tiger, Hidden Dragon: The Laboratory Diagnosis of Severe Acute Respiratory Syndrome

    Get PDF
    published_or_final_versio

    Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells

    Get PDF
    As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5 ′-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases. © 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.postprin

    Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China

    Get PDF
    Background. Human coronavirus NL63 (HCoV-NL63) is a recently discovered human coronavirus found to cause respiratory illness in children and adults that is distinct from the severe acute respiratory syndrome (SARS) coronavirus and human coronaviruses 229E (HCoV-229E) and OC43 (HCoV-OC43). Methods. We investigated the role that HCoV-NL63, HCoV-OC43, and HCoV-229E played in children hospitalized with fever and acute respiratory symptoms in Hong Kong during the period from August 2001 through August 2002. Results. Coronavirus infections were detected in 26 (4.4%) of 587 children studied; 15 (2.6%) were positive for HCoV-NL63, 9 (1.5%) were positive for HCoV-OC43, and 2 (0.3%) were positive for HCoV-229E. In addition to causing upper respiratory disease, we found that HCoV-NL63 can present as croup, asthma exacerbation, febrile seizures, and high fever. The mean age (± standard deviation [SD]) of the infected children was 30.7 ± 19.8 months (range, 6-57 months). The mean maximum temperature (± SD) for the 12 children who were febrile was 39.3°C ± 0.9°C, and the mean total duration of fever (± SD) for all children was 2.6 ± 1.2 days (range, 1-5 days). HCoV-NL63 infections were noted in the spring and summer months of 2002, whereas HCoV-OC43 infection mainly occurred in the fall and winter months of 2001. HCoV-NL63 viruses appeared to cluster into 2 evolutionary lineages, and viruses from both lineages cocirculated in the same season. Conclusions. HCoV-NL63 is a significant pathogen that contributes to the hospitalization of children, and it was estimated to have caused 224 hospital admissions per 100,000 population aged 6 years each year in Hong Kong. © 2005 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract

    Get PDF
    BACKGROUND: Since March, 2013, an avian-origin influenza A H7N9 virus has caused severe pneumonia in China. The aim of this study was to investigate the pathogenesis of this new virus in human beings. METHODS: We obtained ex-vivo cultures of the human bronchus, lung, nasopharynx, and tonsil and in-vitro cultures of primary human alveolar epithelial cells and peripheral blood monocyte-derived macrophages. We compared virus tropism and induction of proinflammatory cytokine responses of two human influenza A H7N9 virus isolates, A/Shanghai/1/2013 and A/Shanghai/2/2013; a highly pathogenic avian influenza H5N1 virus; the highly pathogenic avian influenza H7N7 virus that infected human beings in the Netherlands in 2003; the 2009 pandemic influenza H1N1 virus, and a low pathogenic duck H7N9 virus that was genetically different to the human disease causing A H7N9 viruses. FINDINGS: Both human H7N9 viruses replicated efficiently in human bronchus and lung ex-vivo cultures, whereas duck/H7N9 virus failed to replicate in either. Both human A H7N9 viruses infected both ciliated and non-ciliated human bronchial epithelial cells and replicated to higher titres than did H5N1 (p<0·0001 to 0·0046) and A/Shanghai/1/2013 replicated to higher titres than did H7N7 (p=0·0002-0·01). Both human A H7N9 viruses predominantly infected type II alveolar epithelial cells and alveolar macrophages in the human lung and replicated to higher titres than did H5N1 (p<0·0001 to 0·0078); A/Shanghai/1/2013 replicated to higher titres than did H1N1 (p=0·0052-0·05) and H7N7 (p=0·0031-0·0151). Human H7N9 viruses were less potent inducers of proinflammatory cytokines compared with H5N1 virus. INTERPRETATION: Collectively, the results suggest that the novel H7N9 viruses are better adapted to infect and replicate in the human conducting and lower airways than are other avian influenza viruses, including H5N1, and pose an important pandemic threat.postprin

    Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015

    Get PDF
    Evidence of current and past Middle East respiratory syndrome coronavirus (MERS-CoV) infection in dromedary camels slaughtered at an abattoir in Kano, Nigeria in January 2015, was sought by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and serology. MERS-CoV RNA was detected in 14 (11%) of 132 nasal swabs and antibody in 126 (96%) of 131 serum samples. Phylogenetic analyses demonstrate that the viruses in Nigeria are genetically distinct from those reported in the Arabian peninsula.published_or_final_versio

    Absence of MERS-Coronavirus in Bactrian Camels, Southern Mongolia, November 2014

    Get PDF

    Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the Pandemic H1N1 Influenza virus in ferrets

    Get PDF
    Conference Theme: Translating Health Research into Policy and Practice for Health of the PopulationPoster Presentations: Emerging / Infectious Diseases: no. P66-Ab0011published_or_final_versio

    The emergence of human coronavirus EMC: how scared should we be?

    No full text
    • …
    corecore