20 research outputs found
Different responses of myocardial and cerebral blood flow to cord occlusion in exteriorized fetal sheep
Type and duration of fetal asphyxial insult affect the distribution of blood flow to the heart and brain. The purpose of this study was to describe dynamic and quantitative changes in regional myocardial and cerebral blood flow (CBF) during fetal asphyxia induced by total occlusion of the umbilical cord. Eleven exteriorized fetal sheep were subjected to total umbilical cord occlusion and five fetal sheep served as sham controls. Regional blood flow (BF) to the brain and heart was quantified using radioactive microspheres before and after 5 min of occlusion and finally when fetal mean arterial blood pressure had decreased below 25 mm Hg, 9.8 (0.8) [mean (SD)] min after occlusion. Right coronary arterial (RCA) blood flow velocity and carotid BF were registered continuously. Mean values of arterial pH and oxygen content (mL O-2/100 mL) were 7.08 (0.11) and 4.4 (2.9) before cord occlusion and decreased to 6.83 (0.05) and 1.4 (0.9) at 5 min after occlusion (p < 0.01, respectively). Carotid BF was significantly below preocclusion values by 2.5 min (p < 0.05), whereas RCA velocity time integral per minute remained above preocclusion values for 9 min. CBF decreased from 316 (24) before cord occlusion to 156 (30) mL/min/100 g at 5 min (p < 0.01), whereas right myocardial BF was maintained at 792 (125) and 751 (183) mL/min/100 g, respectively. CBF decreased rapidly after total cord occlusion whereas myocardial BF increased and was maintained until shortly before cardiac arrest, suggesting the myocardium to be better preserved during this type of insult in already partially asphyxiated fetuses