166 research outputs found

    Genome sequences of seven foot-andmouth disease virus isolates collected from serial samples from one persistently infected carrier cow in Vietnam

    Full text link
    Several foot-and-mouth disease virus (FMDV) carrier cattle were identified in Vietnam by the recovery of infectious virus from oropharyngeal fluid. This report contains the first near-complete genome sequences of seven viruses from sequential samples from one carrier animal collected over the course of 1 year. The characterization of within-host viral evolution has implications for FMDV control strategies

    Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010-2014

    Full text link
    © 2017 The Author(s). Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus' ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buffalo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanAsia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically diseased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread within endemic countries. These findings may support animal health organizations in their endeavor to design animal disease control strategies in response to outbreaks

    Site-specific substitution (Q172R) in the VP1 protein of FMDV isolates collected from asymptomatic carrier ruminants in Vietnam

    Full text link
    The epidemiological significance of asymptomatic persistent foot-and-mouth disease virus (FMDV) infection in carrier animals, specifically its ability to seed new clinical outbreaks, is undetermined, and consistent viral determinants of FMDV persistence have not been identified. We analyzed 114 FMDV O/ME-SA/PanAsia VP1 sequences from naturally infected animals in Vietnam, of which 31 were obtained from persistently infected carrier animals. A site-specific substitution was identified at VP1 residue 172 where arginine was present in all 31 of the carrier-associated viruses, whereas outbreak viruses typically contained glutamine. Additionally, we characterized multiple viruses from a single persistently infected animal that were collected over the course of eight months and at multiple distinct anatomic sites (larynx, dorsal soft palate and dorsal nasopharynx). This work sheds new light on naturally occurring viral mutations within the host and provides a basis for understanding the viral evolution and persistence mechanisms of FMDV

    T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.

    Get PDF
    The clinical course of autoimmune and infectious disease varies greatly, even between individuals with the same condition. An understanding of the molecular basis for this heterogeneity could lead to significant improvements in both monitoring and treatment. During chronic infection the process of T-cell exhaustion inhibits the immune response, facilitating viral persistence. Here we show that a transcriptional signature reflecting CD8 T-cell exhaustion is associated with poor clearance of chronic viral infection, but conversely predicts better prognosis in multiple autoimmune diseases. The development of CD8 T-cell exhaustion during chronic infection is driven both by persistence of antigen and by a lack of accessory 'help' signals. In autoimmunity, we find that where evidence of CD4 T-cell co-stimulation is pronounced, that of CD8 T-cell exhaustion is reduced. We can reproduce the exhaustion signature by modifying the balance of persistent stimulation of T-cell antigen receptors and specific CD2-induced co-stimulation provided to human CD8 T cells in vitro, suggesting that each process plays a role in dictating outcome in autoimmune disease. The 'non-exhausted' T-cell state driven by CD2-induced co-stimulation is reduced by signals through the exhaustion-associated inhibitory receptor PD-1, suggesting that induction of exhaustion may be a therapeutic strategy in autoimmune and inflammatory disease. Using expression of optimal surrogate markers of co-stimulation/exhaustion signatures in independent data sets, we confirm an association with good clinical outcome or response to therapy in infection (hepatitis C virus) and vaccination (yellow fever, malaria, influenza), but poor outcome in autoimmune and inflammatory disease (type 1 diabetes, anti-neutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, idiopathic pulmonary fibrosis and dengue haemorrhagic fever). Thus, T-cell exhaustion plays a central role in determining outcome in autoimmune disease and targeted manipulation of this process could lead to new therapeutic opportunities

    Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature

    Get PDF
    Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy and targeting these features might enhance the efficacy of current treatment. A detailed study of the biological characteristics and behaviour of metastatic OS cells may provide a rational basis for innovative treatment strategies. The aim of this review is to give an overview of the biological changes in metastatic OS cells and the preclinical and clinical efforts targeting the different steps in OS metastases and how these contribute to designing a metastasis directed treatment for OS

    An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex

    Get PDF
    Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the “Mediterranean” (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the “African silver-leafing” (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the “ASL” does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies

    Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output

    Get PDF
    We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning
    corecore