26 research outputs found

    Potential Prognostic Significance of Decreased Serum Levels of TRAIL after Acute Myocardial Infarction

    Get PDF
    BACKGROUND: Since soluble TRAIL exhibits anti-inflammatory and anti-atherosclerotic activities both in vitro and in animal models, this study was designed to assess the relationship between the serum levels of TRAIL and clinical outcomes in patients with acute myocardial infarction (AMI). METHODOLOGY/PRINCIPAL FINDINGS: Levels of TRAIL were measured by ELISA in serial serum samples obtained from 60 patients admitted for AMI, both during hospitalization and in a follow-up of 12 months, as well as in 60 healthy control subjects. Serum levels of TRAIL were significantly decreased in patients with AMI at baseline (within 24 hours from admission), compared with healthy controls, and showed a significant inverse correlation with a series of negative prognostic markers, such as CK, CK-MB and BNP. TRAIL serum levels progressively increased at discharge, but normalized only at 6-12 months after AMI. Of note, low TRAIL levels at the patient discharge were associated with increased incidence of cardiac death and heart failure in the 12-month follow-up, even after adjustment for demographic and clinical risk parameters (hazard ratio [HR] of 0.93 [95% CI, 0.89 to 0.97]; p = 0.001). CONCLUSIONS/SIGNIFICANCE: Although the number of patients studied was limited, our findings indicate for the first time that circulating TRAIL might represent an important predictor of cardiovascular events, independent of conventional risk markers

    Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    Get PDF
    BACKGROUND: Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. METHODS: NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. RESULTS: Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs. CONCLUSION: HDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas

    Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth

    Get PDF
    Background: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. Methods and Findings: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. Conclusion: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion

    Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations

    Full text link
    Accumulation of the DNA/RNA binding protein fused in sarcoma (FUS) as inclusions in neurons and glia is the pathological hallmark of amyotrophic lateral sclerosis patients with mutations in FUS (ALS-FUS) as well as in several subtypes of frontotemporal lobar degeneration (FTLD-FUS), which are not associated with FUS mutations. Despite some overlap in the phenotype and neuropathology of FTLD-FUS and ALS-FUS, significant differences of potential pathomechanistic relevance were recently identified in the protein composition of inclusions in these conditions. While ALS-FUS showed only accumulation of FUS, inclusions in FTLD-FUS revealed co-accumulation of all members of the FET protein family, that include FUS, Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 15 (TAF15) suggesting a more complex disturbance of transportin-mediated nuclear import of proteins in FTLD-FUS compared to ALS-FUS. To gain more insight into the mechanisms of inclusion body formation, we investigated the role of Transportin 1 (Trn1) as well as 13 additional cargo proteins of Transportin in the spectrum of FUS-opathies by immunohistochemistry and biochemically. FUS-positive inclusions in six ALS-FUS cases including four different mutations did not label for Trn1. In sharp contrast, the FET-positive pathology in all FTLD-FUS subtypes was also strongly labeled for Trn1 and often associated with a reduction in the normal nuclear staining of Trn1 in inclusion bearing cells, while no biochemical changes of Trn1 were detectable in FTLD-FUS. Notably, despite the dramatic changes in the subcellular distribution of Trn1 in FTLD-FUS, alterations of its cargo proteins were restricted to FET proteins and no changes in the normal physiological staining of 13 additional Trn1 targets, such as hnRNPA1, PAPBN1 and Sam68, were observed in FTLD-FUS. These data imply a specific dysfunction in the interaction between Trn1 and FET proteins in the inclusion body formation in FTLD-FUS. Moreover, the absence of Trn1 in ALS-FUS provides further evidence that ALS-FUS and FTLD-FUS have different underlying pathomechanisms

    Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection.

    Get PDF
    Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response
    corecore