5 research outputs found

    Evaluation of spinetoram and spinosad for control of Prostephanus truncatus, Rhyzopertha dominica, Sitophilus oryzae, and Tribolium confusum on stored grains under laboratory tests

    No full text
    Spinetoram and spinosad have been evaluated against certain stored-product insect pests with success but there are no data available on the comparison of the efficacy of these two novel compounds in stored grains. Thus, laboratory bioassays were conducted to compare spinetoram and spinosad as grain protectants against Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) adults, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) adults, Sitophilus oryzae (L.) (Coleoptera: Curculionidae) adults, and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) adults and larvae. Factors such as treatment (1 ppm spinetoram, 1 ppm spinosad, 0.1 ppm spinetoram + 0.9 ppm spinosad, 0.5 ppm spinetoram + 0.5 ppm spinosad, and 0.9 ppm spinetoram + 0.1 ppm spinosad), exposure interval (1, 2, 7, and 14 days), temperature (20, 25, and 30 A degrees C), and commodity (barley, maize, rye, and wheat) were evaluated. Progeny production was assessed after 60 days of exposure. Concerning temperatures, for P. truncatus adults, after 14 days of exposure, all adults were dead in treatments except of the case of spinosad alone at 20 A degrees C. Offspring emergence was completely suppressed in all treatments at 20 and 25 A degrees C. For R. dominica adults, after 7 days of exposure, the overall mortality ranged from 92.8 to 100 %. After 14 days of exposure, all adults were dead in all treatments of the combined use of spinetoram and spinosad at 25 and 30 A degrees C. Progeny production was completely suppressed in all treatments at 30 A degrees C. For S. oryzae adults, after 7 days of exposure, all S. oryzae were died at 25 and 30 A degrees C in all treatments except in the case of spinosad alone. Offspring emergence was very low in all treatments and temperatures except in the case of spinosad alone at 30 A degrees C. For T. confusum adults, after 1, 2, and 7 days of exposure, the overall mortality was low in all treatments and temperatures. Concerning commodities, for R. dominica adults, after 7 and 14 days of exposure, the overall mortality was > 97 %. Offspring emergence was very low in all commodities. For S. oryzae adults, after 7 and 14 days of exposure, the overall mortality was increased exceeding 91 % except in the case of spinosad alone 7 days after exposure in barley. Progeny production was high in barley and rye in all treatments. For T. confusum adults, after 7 and 14 days, the overall mortality was low in barley, rye, and wheat. No offspring emergence was recorded in all treatments and commodities. For T. confusum larvae, after 14 days of exposure mortality was further increased, but did not reach 100 % for any of the combinations tested. The results of the present study suggest that the simultaneous application of spinetoram and spinosad was generally equally effective with the use of either spinosad or spinetoram alone. Furthermore, the increase of dose of either compound resulted in the same mortality levels. Thus, no benefits were achieved when spinetoram and spinosad were used simultaneously on grains, regardless of the proportion of each ingredient. These issues should be seriously considered when control measures against stored-product insects are designed

    Sublethal exposure to phosphine decreases offspring production in strongly phosphine resistant female red flour beetles, Tribolium castaneum (Herbst)

    Get PDF
    The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25°C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (
    corecore