22 research outputs found

    Interleukin-6 and Cyclooxygenase-2 downregulation by fatty-acid fractions of Ranunculus constantinopolitanus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medicinal plants represent alternative means for the treatment of several chronic diseases, including inflammation. The genus <it>Ranunculus</it>, a representative of the Ranunculaceae family, has been reported to possess anti-inflammatory, analgesic, antiviral, antibacterial, antiparasitic and antifungal activities, possibly due to the presence of anemonin and other. Different studies have shown the occurrence of unusual fatty acids (FAs) in Ranunculaceae; however, their therapeutic role has not been investigated. The purpose of this study is to characterize potential anti-inflammatory bioactivities in <it>Ranunculus constantinopolitanus </it>D'Urv., traditionally used in Eastern Mediterranean folk medicine.</p> <p>Methods</p> <p>The aerial part of <it>R. constantinopolitanus </it>was subjected to methanol (MeOH) extraction and solvent fractionation. The bioactive fraction (I.2) was further fractionated using column chromatography, and the biologically active subfraction (Y<sub>2+3</sub>) was identified using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The effects of I.2 and Y<sub>2+3 </sub>on cell viability were studied in mouse mammary epithelial SCp2 cells using trypan blue exclusion method. To study the anti-inflammatory activities of I.2 and Y<sub>2+3</sub>, their ability to reduce interleukin (IL)-6 levels was assessed in endotoxin (ET)-stimulated SCp2 cells using enzyme-linked immunosorbent assay (ELISA). In addition, the ability of Y<sub>2+3 </sub>to reduce cyclooxygenase (COX)-2 expression was studied in IL-1-treated mouse intestinal epithelial Mode-K cells via western blotting. Data were analyzed by one-way analysis of variance (ANOVA), Student-Newman-Keuls (SNK), Tukey HSD, two-sample t-test and Dunnett t-tests for multiple comparisons.</p> <p>Results</p> <p>The chloroform fraction (I.2) derived from crude MeOH extract of the plant, in addition to Y<sub>2+3</sub>, a FA mix isolated from this fraction and containing palmitic acid, C18:2 and C18:1 isomers and stearic acid (1:5:8:1 ratio), reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA) and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio), Y<sub>2+3 </sub>exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y<sub>2+3</sub> also reduced COX-2 expression in IL-1-treated Mode-K cells.</p> <p>Conclusion</p> <p>Our studies demonstrate the existence of potential anti-inflammatory bioactivities in <it>R. constantinopolitanus </it>and attribute them to a FA mix in this plant.</p

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts
    corecore