22 research outputs found

    Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO

    Get PDF
    Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-?B activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-?, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-?/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.We thank Cristina Massi Benedetti for digital art and editing. This work was supported by the Specific Targeted Research Project 'Sybaris' (LSHE-CT-2006), contract number 037899 (FP7) and by the Italian Projects PRIN 2007KLCKP8_004 (to LR) and 2007XYB9T9_001 (to SB). CC and AC were financially supported by fellowships from Fundacao para a Ciencia e Tecnologia, Portugal (contracts SFRH/BD/65962/2009 and SFRH/BPD/46292/2008, respectively)

    Use of a health information exchange system in the emergency care of children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children may benefit greatly in terms of safety and care coordination from the information sharing promised by health information exchange (HIE). While information exchange capability is a required feature of the certified electronic health record, we known little regarding how this technology is used in general and for pediatric patients specifically.</p> <p>Methods</p> <p>Using data from an operational HIE effort in central Texas, we examined the factors associated with actual system usage. The clinical and demographic characteristics of pediatric ED encounters (n = 179,445) were linked to the HIE system user logs. Based on the patterns of HIE system screens accessed by users, we classified each encounter as: no system usage, basic system usage, or novel system usage. Using crossed random effects logistic regression, we modeled the factors associated with basic and novel system usage.</p> <p>Results</p> <p>Users accessed the system for 8.7% of encounters. Increasing patient comorbidity was associated with a 5% higher odds of basic usage and 15% higher odds for novel usage. The odds of basic system usage were lower in the face of time constraints and for patients who had not been to that location in the previous 12 months.</p> <p>Conclusions</p> <p>HIE systems may be a source to fulfill users' information needs about complex patients. However, time constraints may be a barrier to usage. In addition, results suggest HIE is more likely to be useful to pediatric patients visiting ED repeatedly. This study helps fill an existing gap in the study of technological applications in the care of children and improves knowledge about how HIE systems are utilized.</p

    Mouse Mesenchymal Stem Cells Suppress Antigen-Specific TH Cell Immunity Independent of Indoleamine 2,3-Dioxygenase 1 (IDO1)

    No full text
    Due to their immunosuppressive properties, human mesenchymal stem cells (hMSC) represent a promising tool for cell-based therapies of autoimmune diseases such as multiple sclerosis (MS). Mouse MSC (mMSC) have been used extensively to characterize and optimize route of administration, motility, cellular targets, and immunosuppressive mechanisms in mouse models of autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE). Tryptophan (trp) catabolism by indolamine-2,3-dioxygenase 1 (IDO1) is a chief endogenous metabolic pathway that tightly regulates unwanted immune responses through depletion of trp and generation of immunosuppressive kynurenines (kyn). IDO1 activity contributes to the immunosuppressive phenotype of hMSC. Here, we demonstrate that although IDO1 is inducible in bone marrow-derived mMSC by proinflammatory stimuli such as interferon-g (IFN-g) and ligands of toll-like receptors (TLR), it does not lead to catabolism of trp in vitro. This failure to catabolize trp is not due to defective TLR signaling as demonstrated by induction of interleukin 6 (IL-6) by TLR activation. While mMSC suppressed the activation of antigen-specific myelin oligodendrocyte glycoprotein (MOG)-reactive T-cell receptor (TCR) transgenic T-helper (TH) cells in co-culture, neither pharmacologic inhibition nor genetic ablation of IDO1 reversed this suppressive effect. Finally, systemic administration of both, IDO1-proficient and phenotypically identical IDO1-deficient mMSC, equally resulted in amelioration of EAE. mMSC, unlike hMSC, do not display IDO1-mediated suppression of antigen-specific T-cell responses
    corecore