11 research outputs found

    Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors

    Get PDF
    We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p-i-n structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.© 2012 TMS

    Reduction of dark current and unintentional background doping in InGaAsN photodetectors by ex situ annealing

    Get PDF
    InGaAsN is a promising material system to enable low-cost GaAs-based detectors to operate in the telecommunication spectrum, despite the problems posed by the low growth temperature required for nitrogen incorporation. We demonstrate that InGaAsN p+-i-n+ structures with nominal In and N fraction of 10% and 3.8%, grown by molecular beam epitaxy (MBE) under non-optimal growth conditions, can be optimized by post growth thermal annealing to match the performance of optimally grown structures. We report the findings of an annealing study by comparing the photoluminescence spectra, dark current and background concentration of the as-grown and annealed samples. The dark current of the optimally annealed sample is approximately 2 μA/cm2 at an electric field of 100 kV/cm, and is the lowest reported to date for InGaAsN photodetectors with a cut-off wavelength of 1.3 μm. Evidence of lower unintentional background concentration after annealing at a sufficiently high temperature, is also presented

    GaInNAsSb/GaAs Photodiodes for Long-Wavelength Applications

    No full text

    Improved optoelectronic properties of rapid thermally annealed dilute nitride GaInNAs photodetectors

    No full text
    We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p-i-n structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.© 2012 TMS

    Improved optoelectronic properties of rapid thermally annealed dilute nitride GaInNAs photodetectors

    Get PDF
    We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p-i-n structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.© 2012 TMS

    Dark current mechanisms in InxGa1-xAs 1-yNy

    No full text
    In order to extend the photo response of GaAs to optical telecommunication wavelengths, In and N can be incorporated into GaAs to yield a perfect lattice match of InxGa1-xAs1-yNy with GaAs with a bandgap that strongly decreases with increasing N composition. The potential usage of such a material as photodetectors and photovoltaic applications has been reported.In this work, we investigate the dark current mechanisms in the InxGa1-xAs1-yNy material
    corecore