14 research outputs found

    A New View of Carcinogenesis and an Alternative Approach to Cancer Therapy

    Get PDF
    During the last few decades, cancer research has focused on the idea that cancer is caused by genetic alterations and that this disease can be treated by reversing or targeting these alterations. The small variations in cancer mortality observed during the previous 30 years indicate, however, that the clinical applications of this approach have been very limited so far. The development of future gene-based therapies that may have a major impact on cancer mortality may be compromised by the high number and variability of genetic alterations recently found in human tumors. This article reviews evidence that tumor cells, in addition to acquiring a complex array of genetic changes, develop an alteration in the metabolism of oxygen. Although both changes play an essential role in carcinogenesis, the altered oxygen metabolism of cancer cells is not subject to the high genetic variability of tumors and may therefore be a more reliable target for cancer therapy. The utility of this novel approach for the development of therapies that selectively target tumor cells is discussed

    Carboxypeptidase G2-based gene-directed enzyme–prodrug therapy: a new weapon in the GDEPT armoury

    No full text
    Gene-directed enzyme-prodrug therapy (GDEPT) aims to improve the therapeutic ratio ( benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending

    Structural Health Monitoring Using Guided Ultrasonic Waves

    No full text
    corecore