502 research outputs found
Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion
Subglacial water modulates glacier-bed friction and therefore is of fundamental importance when characterising the dynamics of ice masses. The state of subglacial pore water, whether liquid or frozen, is associated with differences in electrical resistivity that span several orders of magnitude; hence, liquid water can be inferred from electrical resistivity depth profiles. Such profiles can be obtained from inversions of transient (time-domain) electromagnetic (TEM) soundings, but these are often non-unique. Here, we adapt an existing Bayesian transdimensional algorithm (Multimodal Layered Transdimensional Inversion – MuLTI) to the inversion of TEM data using independent depth constraints to provide statistical properties and uncertainty analysis of the resistivity profile with depth. The method was applied to ground-based TEM data acquired on the terminus of the Norwegian glacier, Midtdalsbreen, with depth constraints provided by co-located ground-penetrating radar data. Our inversion shows that the glacier bed is directly underlain by material of resistivity 102 Ωm ± 1000 %, with thickness 5–40 m, in turn underlain by a highly conductive basement (100 Ωm ± 15 %). High-resistivity material, 5×104 Ωm ± 25 %, exists at the front of the glacier. All uncertainties are defined by the interquartile range of the posterior resistivity distribution. Combining these resistivity profiles with those from co-located seismic shear-wave velocity inversions to further reduce ambiguity in the hydrogeological interpretation of the subsurface, we propose a new 3-D interpretation in which the Midtdalsbreen subglacial material is partitioned into partially frozen sediment, frozen sediment/permafrost and weathered/fractured bedrock with saline water
Mapping the current psychology provision for children and young people with juvenile dermatomyositis
Objectives: Juvenile Dermatomyositis (JDM) is a rare, chronic autoimmune condition of childhood, with known psychosocial implications. In this study, we sought to establish current psychological support for children and young people across the UK with rheumatic conditions, with a specific focus on those with JDM. Methods: Electronic surveys were distributed to the 15 centres that belong to the JDM Research Group in the UK, collecting responses from health-care professionals in the fields of medicine, nursing and psychology. Results: One hundred per cent of professionals from medicine and nursing replied from all 15 centres. Of these, 7 (47%) did not have a named psychologist as part of their rheumatology team, despite the majority [13 (87%)] having >200 paediatric rheumatology patients. Of the remaining centres, hospital psychology provision varied considerably. When rating their service, only 3 (8%) of 40 professionals scored their service as five (where one is poor and five is excellent); there were wide discrepancies in these scores. Many challenges were discussed, including limited psychology provision, lack of time and difficulties in offering support across large geographical areas. Conclusion: Many of the challenges discussed are applicable to other centres worldwide. Suggestions have been proposed that might help to improve the situation for children and young people with rheumatic conditions, including JDM. Based on these findings, we suggest that rheumatology teams maximize use of these data to advocate and work toward more comprehensive psychology provision and support in their individual centres
Multimodal Layered Transdimensional Inversion of Seismic Dispersion Curves With Depth Constraints
MuLTI (Multimodal Layered Transdimensional Inversion) is a Markov chain Monte Carlo implementation of Bayesian inversion for the probability distribution of shear wave velocity (Vs) as a function of depth. Based on Multichannel Analysis of Surface Wave methods, it requires as data (i) a Rayleigh-wave dispersion curve and (ii) additional layer depth constraints, the latter we show significantly improve resolution compared to conventional unconstrained inversions. Such depth constraints may be drawn from any source (e.g., boreholes, complementary geophysical data) provided they also represent a seismic interface. We apply MuLTI to a Norwegian glacier, Midtdalsbreen, in which ground-penetrating radar was used to constrain internal layers of snow, ice, and subglacial sediments, with transitions at 2 and 25.5 m, and whose Vs is assumed to be in the range 500–1,700, 1,700–1,950, and 200–2,800 m/s, respectively. Synthetic modeling demonstrates that MuLTI recovers the true model of Vs variation with depth. Significantly, compared to inversions without depth constraints, in this synthetic case MuLTI not only reduces by about a factor of 10 the error between the true and the best fitting model, but also reduces by a factor of 2 the vertically averaged spread of the distribution of Vs based on the 95% credible intervals. We further show that using frequencies above about 100 Hz lead to unconverged solutions due to mode ambiguities associated with fine spatial structures. For our acquired data on Midtdalsbreen, we use 14-100 Hz data for which MuLTI produces a large-scale converged inversion
Subglacial sediment distribution from constrained seismic inversion, using MuLTI software: Examples from Midtdalsbreen, Norway
Fast ice flow is associated with the deformation of subglacial sediment. Seismic shear velocities, Vs, increase with the rigidity of material and hence can be used to distinguish soft sediment from hard bedrock substrates. Depth profiles of Vs can be obtained from inversions of Rayleigh wave dispersion curves, from passive or active-sources, but these can be highly ambiguous and lack depth sensitivity. Our novel Bayesian transdimensional algorithm, MuLTI, circumvents these issues by adding independent depth constraints to the inversion, also allowing comprehensive uncertainty analysis. We apply MuLTI to the inversion of a Rayleigh wave dataset, acquired using active-source (Multichannel Analysis of Surface Waves) techniques, to characterise sediment distribution beneath the frontal margin of Midtdalsbreen, an outlet of Norway's Hardangerjøkulen ice cap. Ice thickness (0–20 m) is constrained using co-located GPR data. Outputs from MuLTI suggest that partly-frozen sediment (Vs 500–1000 m s−1), overlying bedrock (Vs 2000–2500 m s−1), is present in patches with a thickness of ~4 m, although this approaches the resolvable limit of our Rayleigh wave frequencies (14–100 Hz). Uncertainties immediately beneath the glacier bed are <280 m s−1, implying that MuLTI cannot only distinguish bedrock and sediment substrates but does so with an accuracy sufficient for resolving variations in sediment properties
Integrated Borehole, Radar, and Seismic Velocity Analysis Reveals Dynamic Spatial Variations Within a Firn Aquifer in Southeast Greenland
Perennial water storage in firn aquifers has been observed within the lower percolation zone of the southeast Greenland ice sheet. Spatially distributed seismic and radar observations, made ~50 km upstream of the Helheim Glacier terminus, reveal spatial variations of seismic velocity within a firn aquifer. From 1.65 to 1.8 km elevation, shear‐wave velocity (Vs) is 1,290 ± 180 m/s in the unsaturated firn, decreasing below the water table (~15 m depth) to 1,130 ± 250 m/s. Below 1.65 km elevation, Vs in the saturated firn is 1,270 ± 220 m/s. The compressional‐to‐shear velocity ratio decreases in the downstream saturated zone, from 2.30 ± 0.54 to 2.01 ± 0.46, closer to its value for pure ice (2.00). Consistent with colocated firn cores, these results imply an increasing concentration of ice in the downstream sites, reducing the porosity and storage potential of the firn likely caused by episodic melt and freeze during the evolution of the aquifer.
Plain Language Summary
An integrated geophysical analysis of seismic, radar, and borehole measurements has been completed over a firn aquifer in southeast Greenland. We show the stiffness of the aquifer increases at lower elevations, closer to sea level, which leads to a decrease in pore space for the meltwater to be stored. This corresponds to an increase in ice content within the firn at lower elevations, as observed in borehole measurements, and likely caused by the meltwater refreezing within and below the aquifer
Management evaluation of metastasis in the brain (MEMBRAIN)—a United Kingdom and Ireland prospective, multicenter observational study
Background: In recent years an increasing number of patients with cerebral metastasis (CM) have been referred to the neuro-oncology multidisciplinary team (NMDT). Our aim was to obtain a national picture of CM referrals to assess referral volume and quality and factors affecting NMDT decision making. / Methods: A prospective multicenter cohort study including all adult patients referred to NMDT with 1 or more CM was conducted. Data were collected in neurosurgical units from November 2017 to February 2018. Demographics, primary disease, KPS, imaging, and treatment recommendation were entered into an online database. / Results: A total of 1048 patients were analyzed from 24 neurosurgical units. Median age was 65 years (range, 21-93 years) with a median number of 3 referrals (range, 1-17 referrals) per NMDT. The most common primary malignancies were lung (36.5%, n = 383), breast (18.4%, n = 193), and melanoma (12.0%, n = 126). A total of 51.6% (n = 541) of the referrals were for a solitary metastasis and resulted in specialist intervention being offered in 67.5% (n = 365) of cases. A total of 38.2% (n = 186) of patients being referred with multiple CMs were offered specialist treatment. NMDT decision making was associated with number of CMs, age, KPS, primary disease status, and extent of extracranial disease (univariate logistic regression, P < .001) as well as sentinel location and tumor histology (P < .05). A delay in reaching an NMDT decision was identified in 18.6% (n = 195) of cases. / Conclusions: This study demonstrates a changing landscape of metastasis management in the United Kingdom and Ireland, including a trend away from adjuvant whole-brain radiotherapy and specialist intervention being offered to a significant proportion of patients with multiple CMs. Poor quality or incomplete referrals cause delay in NMDT decision making
Do animal models of brain tumors replicate human peritumoral edema? a systematic literature search
Introduction
Brain tumors cause morbidity and mortality in part through peritumoral brain edema. The current main treatment for peritumoral brain edema are corticosteroids. Due to the increased recognition of their side-effect profile, there is growing interest in finding alternatives to steroids but there is little formal study of animal models of peritumoral brain edema. This study aims to summarize the available literature.
Methods
A systematic search was undertaken of 5 literature databases (Medline, Embase, CINAHL, PubMed and the Cochrane Library). The generic strategy was to search for various terms associated with “brain tumors”, “brain edema” and “animal models”.
Results
We identified 603 reports, of which 112 were identified as relevant for full text analysis that studied 114 peritumoral brain edema animal models. We found significant heterogeneity in the species and strain of tumor-bearing animals, tumor implantation method and edema assessment. Most models did not produce appreciable brain edema and did not test for observable manifestations thereof.
Conclusion
No animal model currently exists that enable the investigation of novel candidates for the treatment of peritumoral brain edema. With current interest in alternative treatments for peritumoral brain edema, there is an unmet need for clinically relevant animal models
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector
A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN
- …