11 research outputs found

    Lymphomatoid papulosis (LyP) with 6p25.3 rearrangement

    Get PDF
    Review on lymphomatoid papulosis (LyP) with 6p25.3 rearrangement, with data on clinics, and the genes implicated

    Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel

    Get PDF
    Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons

    Lesion of the Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats

    Get PDF
    Abnormal synchronous activation of the glutamatergic olivo-cerebellar pathway has been suggested to be crucial for the harmaline-induced tremor. The cerebellum receives two catecholaminergic pathways: the dopaminergic pathway arising from the ventral tegmental area/substantia nigra pars compacta, and the noradrenergic one from the locus coeruleus. The aim of the present study was to examine a contribution of the cerebellar catecholaminergic innervations to the harmaline-induced tremor in rats. Rats were injected bilaterally into the cerebellar vermis with 6-hydroxydopamine (6-OHDA; 8 μg/0.5 μl) either alone or this treatment was preceded (30 min earlier) by desipramine (15 mg/kg ip). Harmaline was administered to animals in doses of 7.5 or 15 mg/kg ip. Tremor of forelimbs was measured as a number of episodes during a 90-min observation. Rats were killed by decapitation 30 or 120 min after harmaline treatment. The levels of dopamine, noradrenaline, serotonin, and their metabolites were measured by HPLC in the cerebellum, substantia nigra, caudate–putamen, and frontal cortex. 6-OHDA injected alone enhanced the harmaline-induced tremor. Furthermore, it decreased the noradrenaline level by ca. 40–80% in the cerebellum and increased the levels of serotonin and 5-HIAA in the caudate–putamen and frontal cortex in untreated and/or harmaline-treated animals. When 6-OHDA treatment was preceded by desipramine, it decreased dopaminergic transmission in some regions of the cerebellum while inducing its compensatory activation in others. The latter lesion did not markedly influence the tremor induced by harmaline. The present study indicates that noradrenergic innervation of the cerebellum interacts with cerebral serotonergic systems and plays an inhibitory role in the harmaline-induced tremor

    Targeting TRPV1 as an Alternative Approach to Narcotic Analgesics to Treat Chronic Pain Conditions

    No full text
    In spite of intense research efforts and after the dedicated Decade of Pain Control and Research, there are not many alternatives to opioid-based narcotic analgesics in the therapeutic armamentarium to treat chronic pain conditions. Chronic opioid treatment is associated with sedation, tolerance, dependence, hyperalgesia, respiratory depression, and constipation. Since the affective component is an integral part of pain perception, perhaps it is inevitable that potent analgesics possess the property of impacting pain pathways in the supraspinal structures. The question still remains to be answered is that whether a powerful analgesic can be devoid of narcotic effect and addictive potentials. Local anesthetics are powerful analgesics for acute pain by blocking voltage-gated sodium channels that are involved in generation and propagation of action potentials. Antidepressants and anticonvulsants have proven to be useful in the treatment of certain modalities of pain. In neuropathic pain conditions, the complexity arises because of the notion that neuronal circuitry is altered, as occurs in phantom pain, in that pain is perceived even in the absence of peripheral nociceptive inputs. If the locus of these changes is in the central nervous system, commonly used analgesics may not be very useful. This review focuses on the recent advances in nociceptive transmission and nociceptive transient receptor potential vanilloid 1 channel as a target for treating chronic pain conditions with its agonists/antagonists
    corecore