646 research outputs found
Bayesian Point Set Registration
Point set registration involves identifying a smooth invertible
transformation between corresponding points in two point sets, one of which may
be smaller than the other and possibly corrupted by observation noise. This
problem is traditionally decomposed into two separate optimization problems:
(i) assignment or correspondence, and (ii) identification of the optimal
transformation between the ordered point sets. In this work, we propose an
approach solving both problems simultaneously. In particular, a coherent
Bayesian formulation of the problem results in a marginal posterior
distribution on the transformation, which is explored within a Markov chain
Monte Carlo scheme. Motivated by Atomic Probe Tomography (APT), in the context
of structure inference for high entropy alloys (HEA), we focus on the
registration of noisy sparse observations of rigid transformations of a known
reference configuration.Lastly, we test our method on synthetic data sets.Comment: 15 pages, 20 figure
Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds
The synthesis, infra-red, Raman and NMR spectra and crystal structure of 2,
4, 4- trimethyl-4, 5- dihydro-3H-benzo[b] [1, 4] diazepin-1-ium
tetrachlorocadmate, [C12H17N2]2CdCl4 and benzene-1,2-diaminium
decachlorotricadmate(II) [C6H10N2]2Cd3Cl10 are reported.
The [C12H17N2]2CdCl4 compound crystallizes in the triclinic system (P-1 space
group) with Z = 2 and the following unit cell dimensions: a = 9.6653(8)
angstrom, b = 9.9081(9) angstrom, c = 15.3737(2) angstrom, alpha =
79.486(1)degrees, beta = 88.610(8)degrees and gamma = 77.550(7)degrees. The
structure was solved by using 4439 independent reflections down to R value of
0.029. In crystal structure, the tetrachlorocadmiate anion is connected to two
organic cations through N-H...Cl hydrogen bonds and Van Der Waals interaction
as to build cation-anion-cation cohesion. The [C6H10N2]2Cd3Cl10 crystallizes in
the triclinic system (P-1 space group). The unit cell dimensions are a = 6.826
(5)angstrom, b = 9.861 (7)angstrom, c = 10.344 (3)angstrom, alpha = 103.50
(1)degrees, beta = 96.34 (4)degrees and gamma = 109.45 (3)degrees, Z=2. The
final R value is 0.053 (Rw=0.128). Its crystal structure consists of organic
cations and polymeric chains of [Cd3Cl10]4- anions running along the [011]
direction, In The [C6H10N2]2Cd3Cl10 compounds hydrogen bond interactions
between the inorganic chains and the organic cations, contribute to the crystal
packing.
PACS Codes: 61.10.Nz, 61.18.Fs, 78.30.-jComment: 19 pages, 10 figure
Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations
A structural model of carbon nanocoils (CNCs) on the basis of carbon nanotubes (CNTs) was proposed. The Young’s moduli and spring constants of CNCs were computed and compared with those of CNTs. Upon elongation and compression, CNCs exhibit superelastic properties that are manifested by the nearly invariant average bond lengths and the large maximum elastic strain limit. Analysis of bond angle distributions shows that the three-dimensional spiral structures of CNCs mainly account for their unique superelasticity
Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores
Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs
Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo
Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone.This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos
Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization
Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role
A local outbreak of dengue caused by an imported case in Dongguan China
<p>Abstract</p> <p>Background</p> <p>Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions around the world. Since the first occurrence of dengue was confirmed in Guangdong, China in 1978, dengue outbreaks have been reported sequentially in different provinces in South China transmitted by<sup>.</sup>peridomestic <it>Ae. albopictus </it>mosquitoes, diplaying <it>Ae. aegypti</it>, a fully domestic vector that transmits dengue worldwide. Rapid and uncontrolled urbanization is a characteristic change in developing countries, which impacts greatly on vector habitat, human lifestyle and transmission dynamics on dengue epidemics. In September 2010, an outbreak of dengue was detected in Dongguan, a city in Guangdong province characterized by its fast urbanization. An investigation was initiated to identify the cause, to describe the epidemical characteristics of the outbreak, and to implement control measures to stop the outbreak. This is the first report of dengue outbreak in Dongguan, even though dengue cases were documented before in this city.</p> <p>Methods</p> <p>Epidemiological data were obtained from local Center of Disease Control and prevention (CDC). Laboratory tests such as real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), the virus cDNA sequencing, and Enzyme-Linked immunosorbent assay (ELISA) were employed to identify the virus infection and molecular phylogenetic analysis was performed with MEGA5. The febrile cases were reported every day by the fever surveillance system. Vector control measures including insecticidal fogging and elimination of habitats of <it>Ae. albopictus </it>were used to control the dengue outbreak.</p> <p>Results</p> <p>The epidemiological studies results showed that this dengue outbreak was initiated by an imported case from Southeast Asia. The outbreak was characterized by 31 cases reported with an attack rate of 50.63 out of a population of 100,000. <it>Ae. albopictus </it>was the only vector species responsible for the outbreak. The virus cDNA sequencing analysis showed that the virus responsible for the outbreak was Dengue Virus serotype-1 (DENV-1).</p> <p>Conclusions</p> <p>Several characterized points of urbanization contributed to this outbreak of dengue in Dongguan: the residents are highly concentrated; the residents' life habits helped to form the habitats of <it>Ae. albopictus </it>and contributed to the high Breteau Index; the self-constructed houses lacks of mosquito prevention facilities. This report has reaffirmed the importance of a surveillance system for infectious diseases control and aroused the awareness of an imported case causing the epidemic of an infectious disease in urbanized region.</p
MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion
Mitochondria are double-membraned organelles with variable shapes influenced by metabolic conditions, developmental stage, and environmental stimuli. Their dynamic morphology is a result of regulated and balanced fusion and fission processes. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and the maintenance of membrane potential. Mitofusins are dynamin-related GTPases that are essential for mitochondrial fusion. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via combined oligomerization and GTP hydrolysis. However, the molecular mechanisms of this process remain unknown. Here we present crystal structures of engineered human MFN1 containing the GTPase domain and a helical domain during different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of MFN1 and resembles the ‘neck’ of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote GTPase domain dimerization in the transition state. Disruption of GTPase domain dimerization abolishes the fusogenic activity of MFN1. Moreover, a conserved aspartate residue trigger was found to affect mitochondrial elongation in MFN1, probably through a GTP-loading-dependent domain rearrangement. Thus, we propose a mechanistic model for MFN1-mediated mitochondrial tethering, and our results shed light on the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders
- …