36 research outputs found

    Contribution of Recipient-Derived Cells in Allograft Neointima Formation and the Response to Stent Implantation

    Get PDF
    Allograft coronary disease is the dominant cause of increased risk of death after cardiac transplantation. While the percutaneous insertion of stents is the most efficacious revascularization strategy for allograft coronary disease there is a high incidence of stent renarrowing. We developed a novel rabbit model of sex-mismatched allograft vascular disease as well as the response to stent implantation. In situ hybridization for the Y-chromosome was employed to detect male cells in the neointima of stented allograft, and the population of recipient derived neointimal cells was measured by quantitative polymerase chain reaction and characterized by immunohistochemistry. To demonstrate the participation of circulatory derived cells in stent neointima formation we infused ex vivo labeled peripheral blood mononuclear cells into native rabbit carotid arteries immediately after stenting. Fourteen days after stenting the neointima area was 58% greater in the stented vs. non-stented allograft segments (p = 0.02). Male cells were detected in the neointima of stented female-to-male allografts. Recipient-derived cells constituted 72.1±5.7% and 81.5±4.2% of neointimal cell population in the non-stented and stented segments, respectively and the corresponding proliferation rates were only 2.7±0.5% and 2.3±0.2%. Some of the recipient-derived neointimal cells were of endothelial lineage. The ex vivo tagged cells constituted 9.0±0.4% of the cells per high power field in the stent neointima 14 days after stenting. These experiments provide important quantitative data regarding the degree to which host-derived blood-borne cells contribute to neointima formation in allograft vasculopathy and the early response to stent implantation

    Neighborhood level risk factors for type 1 diabetes in youth: the SEARCH case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>European ecologic studies suggest higher socioeconomic status is associated with higher incidence of type 1 diabetes. Using data from a case-control study of diabetes among racially/ethnically diverse youth in the United States (U.S.), we aimed to evaluate the independent impact of neighborhood characteristics on type 1 diabetes risk. Data were available for 507 youth with type 1 diabetes and 208 healthy controls aged 10-22 years recruited in South Carolina and Colorado in 2003-2006. Home addresses were used to identify Census tracts of residence. Neighborhood-level variables were obtained from 2000 U.S. Census. Multivariate generalized linear mixed models were applied.</p> <p>Results</p> <p>Controlling for individual risk factors (age, gender, race/ethnicity, infant feeding, birth weight, maternal age, number of household residents, parental education, income, state), higher neighborhood household income (p = 0.005), proportion of population in managerial jobs (p = 0.02), with at least high school education (p = 0.005), working outside the county (p = 0.04) and vehicle ownership (p = 0.03) were each independently associated with increased odds of type 1 diabetes. Conversely, higher percent minority population (p = 0.0003), income from social security (p = 0.002), proportion of crowded households (0.0497) and poverty (p = 0.008) were associated with a decreased odds.</p> <p>Conclusions</p> <p>Our study suggests that neighborhood characteristics related to greater affluence, occupation, and education are associated with higher type 1 diabetes risk. Further research is needed to understand mechanisms underlying the influence of neighborhood context.</p

    Social identity, social networks and recovery capital in emerging adulthood: a pilot study

    Get PDF
    Background It has been argued that recovery from substance dependence relies on a change in identity, with past research focused on ‘personal identity’. This study assessed support for a social identity model of recovery in emerging adults through examining associations between social identity, social networks, recovery capital, and quality of life. Methods Twenty participants aged 18–21 in residential treatment for substance misuse were recruited from four specialist youth drug treatment services - three detoxification facilities and one psychosocial rehabilitation facility in Victoria, Australia. Participants completed a detailed social network interview exploring the substance use of groups in their social networks and measures of quality of life, recovery capital, and social identity. Results Lower group substance use was associated with higher recovery capital, stronger identification with non-using groups, and greater importance of non-using groups in the social network. Additionally, greater identification with and importance of non-using groups were associated with better environmental quality of life, whereas greater importance conferred on using groups was associated with reduced environmental quality of life. Conclusions Support was found for the role of social identity processes in reported recovery capital and quality of life. Future research in larger, longitudinal samples is required to improve understanding of social identity processes during treatment and early recovery and its relationship to recovery stability. Keywords Social network Social identity Emerging adult Substance use Treatment Recovery Quality of lif

    NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts

    Get PDF
    Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance
    corecore