367 research outputs found
Configuration, Programming, Implementation, and Evaluation of Distributed Control System for a Process Simulator
Abstract
A common industrial distributed control system (DCS), DeltaV, is configured and programmed to control and monitor the Nuclear Process Control Test Facility (NPCTF). A cabinet which holds the hardware of the DelatV DCS system, including programmable logic controller (PLC), power supplies, input/output (I/O) cards, terminals, and relays are configured and wired to field devices of NPCTF. A workstation and HMI screen are configured and setup.
To implement the main functions of NPCTF in the DelatV system, the programming architecture is designed in the DelatV system. The main control and monitoring functions of NPCTF are programmed using industrial languages of Function Block Diagram (FBD) and Sequential Function Chart (SFC) by IEC61113-3. Safety interlocks are added in the program to protect the NPCTF devices from damage. A HMI is developed to operate and monitor the NPCTF. Through the HMI, the operator can monitor the parameters of process of NPCTF, operate the NPCTF, change parameters of the controller, and force the devices.
The process model of SG (Steam Generator) Tank level control is developed using the MATLAB System Identification tool. The model is taken as an example to demonstrate the process of analysis and design the controller of process control. PID is used as the controller algorithm.
The main control and monitoring functions of NPCTF in the DeltaV system are commissioned, tested and evaluated. The evaluation results conclude that the DelatV DCS system can control the NPCTF to achieve the main functions of the NPCTF
Biomechanical Analysis of the Fixation System for T-Shaped Acetabular Fracture
This study aims to evaluate the biomechanical mechanism of fixation systems in the most frequent T-shaped acetabular fracture using finite element method. The treatment of acetabular fractures was based on extensive clinical experience. Three commonly accepted rigid fixation methods (double column reconstruction plates (P × 2), anterior column plate combined with posterior column screws (P + PS), and anterior column plate combined with quadrilateral area screws (P + QS)) were chosen for evaluation. On the basis of the finite element model, the biomechanics of these fixation systems were assessed through effective stiffness levels, stress distributions, force transfers, and displacements along the fracture lines. All three fixation systems can be used to obtain effective functional outcomes. The third fixation system (P + QS) was the optimal method for T-shaped acetabular fracture. This fixation system may reduce many of the risks and limitations associated with other fixation systems
Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment
A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment
Demand Response Method Considering Multiple Types of Flexible Loads in Industrial Parks
With the rapid development of the energy internet, the proportion of flexible
loads in smart grid is getting much higher than before. It is highly important
to model flexible loads based on demand response. Therefore, a new demand
response method considering multiple flexible loads is proposed in this paper
to character the integrated demand response (IDR) resources. Firstly, a
physical process analytical deduction (PPAD) model is proposed to improve the
classification of flexible loads in industrial parks. Scenario generation, data
point augmentation, and smooth curves under various operating conditions are
considered to enhance the applicability of the model. Secondly, in view of the
strong volatility and poor modeling effect of Wasserstein-generative
adversarial networks (WGAN), an improved WGAN-gradient penalty (IWGAN-GP) model
is developed to get a faster convergence speed than traditional WGAN and
generate a higher quality samples. Finally, the PPAD and IWGAN-GP models are
jointly implemented to reveal the degree of correlation between flexible loads.
Meanwhile, an intelligent offline database is built to deal with the impact of
nonlinear factors in different response scenarios. Numerical examples have been
performed with the results proving that the proposed method is significantly
better than the existing technologies in reducing load modeling deviation and
improving the responsiveness of park loads.Comment: Submitted to Expert Systems with Application
Experimental Implementation of Remote State Preparation by Nuclear Magnetic Resonance
We have experimentally implemented remote state preparation (RSP) of a qubit
from a hydrogen to a carbon nucleus in molecules of carbon-13 labeled
chloroform CHCl over interatomic distances using liquid-state
nuclear magnetic resonance (NMR) technique. Full RSP of a special ensemble of
qubits, i.e., a qubit chosen from equatorial and polar great circles on a Bloch
sphere with Pati's scheme, was achieved with one cbit communication. Such a RSP
scheme can be generalized to prepare a large number of qubit states and may be
used in other quantum information processing and quantum computing.Comment: 10 pages,5 PS figure
- …