138 research outputs found

    Study of QCD critical point using canonical ensemble method

    Full text link
    The existence of the QCD critical point at non-zero baryon density is not only of great interest for experimental physics but also a challenge for the theory. We use lattice simulations based on the canonical ensemble method to explore the finite baryon density region and look for the critical point. We scan the phase diagram of QCD with three degenerate quark flavors using clover fermions with mπ≈700MeVm_\pi \approx 700{MeV} on 63×46^3\times4 lattices. We measure the baryon chemical potential as we increase the density and we see the characteristic "S-shape" that signals the first order phase transition. We determine the phase boundary by Maxwell construction and report our preliminary results for the location of critical point.Comment: 2 pages, 2 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Critical point of Nf=3N_f = 3 QCD from lattice simulations in the canonical ensemble

    Full text link
    A canonical ensemble algorithm is employed to study the phase diagram of Nf=3N_f = 3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below TcT_c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 \fm and quark masses close to that of the strange, we find the critical point at TE=0.925(5)TcT_E = 0.925(5) T_c and baryon chemical potential μBE=2.60(8)Tc\mu_B^E = 2.60(8) T_c.Comment: 5 pages, 7 figures, references added, published versio

    Non-perturbative renormalization of overlap quark bilinears on domain wall fermion configurations

    Full text link
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for the local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.Comment: 7 pages, 10 figures, presented at the 31st International Symposium on Lattice Field Theory (LATTICE 2013), 29 July - 3 August 2013, Mainz, German

    Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

    Get PDF
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.Comment: 26 pages, 17 figures. More discussions on O(4) breaking effects, and on the perturbative running and a^2p^2 extrapolation of Zs. A subsection for the calculation of the step scaling function of quark mass is added. References added. Version to appear in PR

    Finite density phase transition of QCD with Nf=4N_f=4 and Nf=2N_f=2 using canonical ensemble method

    Full text link
    In a progress toward searching for the QCD critical point, we study the finite density phase transition of Nf=4N_f = 4 and 2 lattice QCD at finite temperature with the canonical ensemble approach. We develop a winding number expansion method to accurately project out the particle number from the fermion determinant which greatly extends the applicable range of baryon number sectors to make the study feasible. Our lattice simulation was carried out with the clover fermions and improved gauge action. For a given temperature, we calculate the baryon chemical potential from the canonical approach to look for the mixed phase as a signal for the first order phase transition. In the case of Nf=4N_f=4, we observe an "S-shape" structure in the chemical potential-density plane due to the surface tension of the mixed phase in a finite volume which is a signal for the first order phase transition. We use the Maxwell construction to determine the phase boundaries for three temperatures below TcT_c. The intersecting point of the two extrapolated boundaries turns out to be at the expected first order transition point at TcT_c with μ=0\mu = 0. This serves as a check for our method of identifying the critical point. We also studied the Nf=2N_f =2 case, but do not see a signal of the mixed phase for temperature as low as 0.83 TcT_c.Comment: 28 pages, 11 figures,references added, final versio
    • …
    corecore