36,168 research outputs found
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
Temporal stability of soil moisture spatial variability at two scales and its implication for optimal field monitoring
International audienceSoil moisture spatial distribution is a key component in characterizing and modeling water movement at multiple scales. The temporal stability of soil moisture spatial distribution at multiple depths was investigated at the 7.9-ha Shale Hills Catchment in central Pennsylvania with a year-round monitoring of 77 sites distributed across the catchment. For this catchment with heterogeneous soils and landforms, integration of soils information into the temporal stability assessment provided a more accurate location of representative monitoring sites for capturing mean soil moisture. The temporal stability pattern of soil moisture at the swale scale was similar to that at the catchment scale, suggesting that the swale could be used as a representative unit in the catchment study in terms of mean soil moisture dynamics. The temporal stability of soil moisture variability in this catchment varied over space and seasons. Temporally stable sites were found in the northwestern and southeastern parts of the catchment, while the areas near the stream and some swale areas had lower temporal stability. The spatial distribution of soil moisture was more stable over time during wet seasons, but less stable during transitional periods (i.e. drying or recharging periods). The temporal stability concept helps the optimal design of field monitoring sites and sampling strategies. On the other hand, the temporally unstable sites provide insights regarding the hydrological processes behind the spatial variability of soil moisture
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
- …