28,758 research outputs found

    Energy conditions bounds and their confrontation with supernovae data

    Full text link
    The energy conditions play an important role in the understanding of several properties of the Universe, including the current accelerating expansion phase and the possible existence of the so-called phantom fields. We show that the integrated bounds provided by the energy conditions on cosmological observables such as the distance modulus μ(z)\mu(z) and the lookback time tL(z)t_L(z) are not sufficient (nor necessary) to ensure the local fulfillment of the energy conditions, making explicit the limitation of these bounds in the confrontation with observational data. We recast the energy conditions as bounds on the deceleration and normalized Hubble parameters, obtaining new bounds which are necessary and sufficient for the local fulfillment of the energy conditions. A statistical confrontation, with 1σ−3σ1\sigma-3\sigma confidence levels, between our bounds and supernovae data from the gold and combined samples is made for the recent past. Our analyses indicate, with 3σ3\sigma confidence levels, the fulfillment of both the weak energy condition (WEC) and dominant energy condition (DEC) for z≤1z \leq 1 and z≲0.8z \lesssim 0.8, respectively. In addition, they suggest a possible recent violation of the null energy condition (NEC) with 3σ3\sigma, i.e. a very recent phase of super-acceleration. Our analyses also show the possibility of violation of the strong energy condition (\textbf{SEC}) with 3σ3\sigma in the recent past (z≤1z \leq 1), but interestingly the q(z)q(z)-best-fit curve crosses the SEC-fulfillment divider at z≃0.67z \simeq 0.67, which is a value very close to the beginning of the epoch of cosmic acceleration predicted by the standard concordance flat Λ\LambdaCDM scenario.Comment: 7 pages, 3 figures. V2: Version to appear in Phys.Rev.D, analyses extended to 1sigma, 2sigma and 3sigma confidence levels, references added, minors change

    Is the transition redshift a new cosmological number?

    Full text link
    Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an expanding accelerating Universe at intermediate redshifts. This means that the Universe underwent a transition from deceleration to acceleration phases at a transition redshift ztz_t of the order unity whose value in principle depends on the cosmology as well as on the assumed gravitational theory. Since cosmological accelerating models endowed with a transition redshift are extremely degenerated, in principle, it is interesting to know whether the value of ztz_t itself can be observationally used as a new cosmic discriminator. After a brief discussion of the potential dynamic role played by the transition redshift, it is argued that future observations combining SNe Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the differential age of galaxies, as well as the redshift drift of the spectral lines may tightly constrain ztz_t, thereby helping to narrow the parameter space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the transition redshift have been added. New data by Planck and H(z) data have been mentioned. New references have been adde

    Asteroseismology and Magnetic Cycles

    Full text link
    Small cyclic variations in the frequencies of acoustic modes are expected to be a common phenomenon in solar-like pulsators, as a result of stellar magnetic activity cycles. The frequency variations observed throughout the solar and stellar cycles contain information about structural changes that take place inside the stars as well as about variations in magnetic field structure and intensity. The task of inferring and disentangling that information is, however, not a trivial one. In the sun and solar-like pulsators, the direct effect of the magnetic field on the oscillations might be significantly important in regions of strong magnetic field (such as solar- / stellar-spots), where the Lorentz force can be comparable to the gas-pressure gradient. Our aim is to determine the sun- / stellar-spots effect on the oscillation frequencies and attempt to understand if this effect contributes strongly to the frequency changes observed along the magnetic cycle. The total contribution of the spots to the frequency shifts results from a combination of direct and indirect effects of the magnetic field on the oscillations. In this first work we considered only the indirect effect associated with changes in the stratification within the starspot. Based on the solution of the wave equation and the variational principle we estimated the impact of these stratification changes on the oscillation frequencies of global modes in the sun and found that the induced frequency shifts are about two orders of magnitude smaller than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and Asteroseismology, to be published on 3 December 2012 at Astronomische Nachrichten 333, No. 10, 1032-103

    From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems

    Full text link
    Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are capable to solve or at least to alleviate some cosmological puzzles, among them: (i) the singularity, (ii) horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the cosmological constant problem become less severe provided that the characteristic scales of the two limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new references adde

    Eddington-Born-Infeld action for dark energy and dark matter

    Full text link
    We argue that Einstein gravity coupled to a Born-Infeld theory provides an attractive candidate to represent dark matter and dark energy. For cosmological models, the Born-Infeld field has an equation of state which interpolates between matter, w=0 (small times), and a cosmological constant w=-1 (large times). On galactic scales, the Born-Infeld field predicts asymptotically flat rotation curves.Comment: A sign mistake in section on galactic scales is pointed out. This sign invalidates the content of that section. See comment on manuscrip

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review
    • …
    corecore