28,395 research outputs found

    Hamilton-Jacobi Approach for Power-Law Potentials

    Get PDF
    The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q)=αqnV(q)=\alpha q^n, where α\alpha and nn are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of α\alpha, nn and the total energy EE. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q)t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of nn, it leads to a simple harmonic oscillator if E>0E>0, an "anti-oscillator" if E<0E<0, or a free particle if E=0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of nn. For n>>1n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n=2n=2), and does not depend on the specific value of nn.Comment: 12 pages, Late

    Jeans' gravitational instability and nonextensive kinetic theory

    Full text link
    The concept of Jeans gravitational instability is rediscussed in the framework of nonextensive statistics and its associated kinetic theory. A simple analytical formula generalizing the Jeans criterion is derived by assuming that the unperturbed self- gravitating collisionless gas is kinetically described by the qq-parameterized class of power law velocity distributions. It is found that the critical values of wavelength and mass depend explicitly on the nonextensive qq-parameter. The standard Jeans wavelength derived for a Maxwellian distribution is recovered in the limiting case qq=1. For power-law distributions with cutoff, the instability condition is weakened with the system becoming unstable even for wavelengths of the disturbance smaller than the standard Jeans length λJ\lambda_J.Comment: 5 pages, including 3 figures. Accepted for publication in A&
    • …
    corecore