25,210 research outputs found

    Exact Lyapunov Exponent for Infinite Products of Random Matrices

    Full text link
    In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary infinite products of random 2×22\times 2 real matrices. All these products are constructed using only two types of matrices, AA and BB, which are chosen according to a stochastic process. The matrix AA is singular, namely its determinant is zero. This formula is derived by using a particular decomposition for the matrix BB, which allows us to write the Lyapunov exponent as a sum of convergent series. Finally, we show with an example that the Lyapunov exponent is a discontinuous function of the given parameter.Comment: 1 pages, CPT-93/P.2974,late

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review

    Dynamical complexity of discrete time regulatory networks

    Full text link
    Genetic regulatory networks are usually modeled by systems of coupled differential equations and by finite state models, better known as logical networks, are also used. In this paper we consider a class of models of regulatory networks which present both discrete and continuous aspects. Our models consist of a network of units, whose states are quantified by a continuous real variable. The state of each unit in the network evolves according to a contractive transformation chosen from a finite collection of possible transformations, according to a rule which depends on the state of the neighboring units. As a first approximation to the complete description of the dynamics of this networks we focus on a global characteristic, the dynamical complexity, related to the proliferation of distinguishable temporal behaviors. In this work we give explicit conditions under which explicit relations between the topological structure of the regulatory network, and the growth rate of the dynamical complexity can be established. We illustrate our results by means of some biologically motivated examples.Comment: 28 pages, 4 figure

    Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates

    Full text link
    We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, the minimum and maximum particle radii are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up-to 20% of the average radius using a physically motivated truncated Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a non-monotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii particularly at high polydispersity.Comment: 9 pages, 5 figure

    Sliding Blocks Revisited: A simulational Study

    Full text link
    A computational study of sliding blocks on inclined surfaces is presented. Assuming that the friction coefficient μ\mu is a function of position, the probability P(λ)P(\lambda) for the block to slide down over a length λ\lambda is numerically calculated. Our results are consistent with recent experimental data suggesting a power-law distribution of events over a wide range of displacements when the chute angle is close to the critical one, and suggest that the variation of μ\mu along the surface is responsible for this.Comment: 6 pages, 4 figures. submitted to Int. J. Mod. Phys. (Proc. Brazilian Wokshop on Simulational Physics
    • …
    corecore