19,701 research outputs found

    Derived Subgroups of Fixed Points in Profinite Groups

    Full text link
    The main result of this paper is the following theorem. Let q be a prime, A an elementary abelian group of order q^3. Suppose that A acts as a coprime group of automorphisms on a profinite group G in such a manner that C_G(a)' is periodic for each nontrivial element a in A. Then G' is locally finite.Comment: To appear in Glasgow Mathematical Journal (2011). 11 page

    Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    Full text link
    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. Thus, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well-known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10610510^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10%20%10\%-20\% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.Comment: 8 pages, no figures, accepted for publication in The European Physical Journal C (EPJC

    Monte Carlo Simulations of Some Dynamical Aspects of Drop Formation

    Full text link
    In this work we present some results from computer simulations of dynamical aspects of drop formation in a leaky faucet. Our results, which agree very well with the experiments, suggest that only a few elements, at the microscopic level, would be necessary to describe the most important features of the system. We were able to set all parameters of the model in terms of real ones. This is an additional advantage with respect to previous theoretical works.Comment: 7 pages (Latex), 6 figures (PS) Accepted to publication in Int. J. Mod. Phys. C Source Codes at http://www.if.uff.br/~arlim

    Sliding Blocks Revisited: A simulational Study

    Full text link
    A computational study of sliding blocks on inclined surfaces is presented. Assuming that the friction coefficient μ\mu is a function of position, the probability P(λ)P(\lambda) for the block to slide down over a length λ\lambda is numerically calculated. Our results are consistent with recent experimental data suggesting a power-law distribution of events over a wide range of displacements when the chute angle is close to the critical one, and suggest that the variation of μ\mu along the surface is responsible for this.Comment: 6 pages, 4 figures. submitted to Int. J. Mod. Phys. (Proc. Brazilian Wokshop on Simulational Physics
    corecore