14,558 research outputs found

    Chemical Potential and the Nature of the Dark Energy: The case of phantom

    Full text link
    The influence of a possible non zero chemical potential μ\mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state (EoS), p=ωρp=\omega \rho (ω<0,constant\omega <0, constant). The entropy condition, S0S \geq 0, implies that the possible values of ω\omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For μ>0\mu >0, the ω\omega-parameter must be greater than -1 (vacuum is forbidden) while for μ<0\mu < 0 not only the vacuum but even a phantomlike behavior (ω<1\omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, μ/T=μ0/T0\mu/T=\mu_0/T_0. Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons μ\mu is always negative and the extended Wien's law allows only a dark component with ω<1/2\omega < -1/2 which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for μ0\mu 0 are permmited only if 1<ω<1/2-1 < \omega < -1/2. The thermodynamics and statistical arguments constrain the EoS parameter to be ω<1/2\omega < -1/2, a result surprisingly close to the maximal value required to accelerate a FRW type universe dominated by matter and dark energy (ω10/21\omega \lesssim -10/21).Comment: 7 pages, 5 figure

    Produtividade do feijoeiro em razão da adubação de cálcio e magnésio no sulco de semeadura.

    Get PDF
    O objetivo deste trabalho foi avaliar o efeito da adição destes produtos nos componentes de produção e na produtividade do feijoeiro irrigado em cultivo de inverno.CONAFE
    corecore