32,448 research outputs found

    Charge migration mechanisms in the DNA at finite temperature revisited; from quasi-ballistic to subdiffusive transport

    Full text link
    Various charge migration mechanisms in the DNA are studied within the framework of the Peyrard-Bishop-Holstein model which has been widely used to address charge dynamics in this macromolecule. To analyze these mechanisms we consider characteristic size and time scales of the fluctuations of the electronic and vibrational subsystems. It is shown, in particular, that due to substantial differences in these timescales polaron formation is unlikely within a broad range of temperatures. We demonstrate that at low temperatures electronic transport can be quasi-ballistic. For high temperatures, we propose an alternative to polaronic charge migration mechanism: the fluctuation-assisted one, in which the electron dynamics is governed by relatively slow fluctuations of the vibrational subsystem. We argue also that the discussed methods and mechanisms can be relevant for other organic macromolecular systems, such as conjugated polymers and molecular aggregates

    Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation

    Full text link
    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1\Omega_{m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields Ω~m=0.28±0.01{\tilde{\Omega}}_{m}= 0.28\pm 0.01 (1σ1\sigma) where Ω~m\tilde{{\Omega}}_{m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Λ\LambdaCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Λ\LambdaCDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.

    Derived Subgroups of Fixed Points in Profinite Groups

    Full text link
    The main result of this paper is the following theorem. Let q be a prime, A an elementary abelian group of order q^3. Suppose that A acts as a coprime group of automorphisms on a profinite group G in such a manner that C_G(a)' is periodic for each nontrivial element a in A. Then G' is locally finite.Comment: To appear in Glasgow Mathematical Journal (2011). 11 page

    Experimental Bell inequality violation without the postselection loophole

    Full text link
    We report on an experimental violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality using energy-time entangled photons. The experiment is not free of the locality and detection loopholes, but is the first violation of the Bell-CHSH inequality using energy-time entangled photons which is free of the postselection loophole described by Aerts et al. [Phys. Rev. Lett. 83, 2872 (1999)].Comment: 4 pages, 3 figures, v2 minor correction
    corecore