75 research outputs found
Einfluss von lebenden Mulchen auf die Begleitflora und die Weizenerträge unter Bedingungen des Ökolandbau
For the success of no-tillage in organic farming, new tools have to be developed to control weeds. One possible strategy could be sowing the main crop into an earlier established living mulch of easily controllable cover crops.
Field trials were carried out in the Swiss midlands to investigate the impact of different legume cover crops on weed populations and grain yield of directly drilled winter wheat (Triticum aestivum L.) in a living mulch system. In general, weed suppressing effect was best with highly productive legumes. A significant reduction of the weed density of dicotyle, monocotyle, and spring germinating species was observed. Though, effective weed suppression resulted also in strong competition with the winter wheat. In order to improve the practicability of such systems, seeding technique of the main crop and living mulch management should be investigated
QTLs for the elongation of axile and lateral roots of maize in response to low water potential
Changes in root architecture and the maintenance of root growth in drying soil are key traits for the adaptation of maize (Zea mays L.) to drought environments. The goal of this study was to map quantitative trait loci (QTLs) for root growth and its response to dehydration in a population of 208 recombinant inbred lines from the International Maize and Wheat Improvement Center (CIMMYT). The parents, Ac7643 and Ac7729/TZSRW, are known to be drought-tolerant and drought-sensitive, respectively. Roots were grown in pouches under well-watered conditions or at low water potential induced by the osmolyte polyethylene glycol (PEG 8000). Axile root length (L Ax) increased linearly, while lateral root length (L Lat) increased exponentially over time. Thirteen QTLs were identified for six seedling traits: elongation rates of axile roots (ERAx), the rate constant of lateral root elongation (k Lat), the final respective lengths (L Ax and L Lat), and the ratios k Lat/ERAx and L Lat/L Ax. While QTLs for lateral root traits were constitutively expressed, most QTLs for axile root traits responded to water stress. For axile roots, common QTLs existed for ERAx and L Ax. Quantitative trait loci for the elongation rates of axile roots responded more clearly to water stress compared to root length. Two major QTLs were detected: a QTL for general vigor in bin 2.02, affecting most of the traits, and a QTL for the constitutive increase in k Lat and k Lat/ERAx in bins 6.04-6.05. The latter co-located with a major QTL for the anthesis-silking interval (ASI) reported in published field experiments, suggesting an involvement of root morphology in drought tolerance. Rapid seedling tests are feasible for elucidating the genetic response of root growth to low water potential. Some loci may even have pleiotropic effects on yield-related traits under drought stres
Early growth of field-grown swiss flint maize landraces
Mild cold stress (chilling) limits early growth of maize (Zea mays L.) in central and northern Europe. Introgression of chilling tolerance from landraces has been proposed, because the genetic basis for chilling tolerance of European Flint x Dent hybrids is small. Therefore, the aim of this study was a detailed characterization of the chilling toler¬ance of Swiss maize landraces, hypothesizing a relatively good performance in marginal thermal environments. The environments were set up by different sowing dates in two years. A functional growth analysis of the shoot from the one-leaf to the six-leaf stage was conducted with eight Swiss landraces and a check hybrid (Magister). The mean air temperature calculated across the six environments was above 15°C. Under these conditions, none of the landraces grew consistently better than Magister. Some landrace-specific relative growth reactions were observed compared to Magister, apparently due to strong changes in the temperature course. However, based on this study direct use of Swiss maize landraces in breeding for the improvement of chilling tolerance is not recom¬mended. More detailed investigations of promising landraces are proposed
Early growth of field-grown swiss flint maize landraces
Mild cold stress (chilling) limits early growth of maize (Zea mays L.) in central and northern Europe. Introgression of chilling tolerance from landraces has been proposed, because the genetic basis for chilling tolerance of European Flint x Dent hybrids is small. Therefore, the aim of this study was a detailed characterization of the chilling toler¬ance of Swiss maize landraces, hypothesizing a relatively good performance in marginal thermal environments. The environments were set up by different sowing dates in two years. A functional growth analysis of the shoot from the one-leaf to the six-leaf stage was conducted with eight Swiss landraces and a check hybrid (Magister). The mean air temperature calculated across the six environments was above 15°C. Under these conditions, none of the landraces grew consistently better than Magister. Some landrace-specific relative growth reactions were observed compared to Magister, apparently due to strong changes in the temperature course. However, based on this study direct use of Swiss maize landraces in breeding for the improvement of chilling tolerance is not recom¬mended. More detailed investigations of promising landraces are proposed
Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach
We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters
B cell-specific conditional expression of Myd88(p.L252P) leads to the development of diffuse large B cell lymphoma in mice
The adaptor protein MYD88 is critical to relay activation of Toll-like receptor signaling to NF-{kappa}B activation.MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B cell malignancies, including diffuse large B cell lymphoma (DLBCL). 29% of activated B cell (ABC)-type DLBCL, which is characterized by constitutive activation of the NF-{kappa}B pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2. Here, we generated a novel mouse model, in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P)(the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These animals develop a lympho-proliferative disease, and occasional transformation into clonal lymphomas. The clonal disease displays morphological and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression ofBCL2 Cross-validation experiments in human DLBCL samples revealed that bothMYD88andCD79Bmutations are substantially enriched in ABC-DLBCL, compared to germinal center B cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occur with MYD88 mutations, further validating our approach. Lastly,in silicoexperiments revealed that particularly MYD88-mutant ABC-DLBCL cells display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL, which could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL
Temporal and Spatial Profiling of Root Growth Revealed Novel Response of Maize Roots under Various Nitrogen Supplies in the Field
A challenge for Chinese agriculture is to limit the overapplication of nitrogen (N) without reducing grain yield. Roots take up N and participate in N assimilation, facilitating dry matter accumulation in grains. However, little is known about how the root system in soil profile responds to various N supplies. In the present study, N uptake, temporal and spatial distributions of maize roots, and soil mineral N (Nmin) were thoroughly studied under field conditions in three consecutive years. The results showed that in spite of transient stimulation of growth of early initiated nodal roots, N deficiency completely suppressed growth of the later-initiated nodal roots and accelerated root death, causing an early decrease in the total root length at the rapid vegetative growth stage of maize plants. Early N excess, deficiency, or delayed N topdressing reduced plant N content, resulting in a significant decrease in dry matter accumulation and grain yield. Notably, N overapplication led to N leaching that stimulated root growth in the 40–50 cm soil layer. It was concluded that the temporal and spatial growth patterns of maize roots were controlled by shoot growth and local soil Nmin, respectively. Improving N management involves not only controlling the total amount of chemical N fertilizer applied, but also synchronizing crop N demand and soil N supply by split N applications
- …