3,101 research outputs found

    Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal

    Get PDF
    We propose a kind of electromagnetic (EM) diode based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This periodic microstructure has separately broken symmetries in both parity (P) and time-reversal (T) but obeys parity-time (PT) symmetry. This kind of diode could support bulk one-way propagating modes either for group velocity or phase velocity with various types of negative and positive refraction. This symmetry-broken system could be a platform to realize abnormal photoelectronic devices, and it may be analogous to an electron counterpart with one-way features

    One-way cloak based on nonreciprocal photonic crystal

    Get PDF
    We propose a physical concept of non-reciprocal transformation optics, by which a one-way invisible cloak is designed. The one-way invisible cloak is made of a coordinate-transformed nonreciprocal photonic crystal, showing a perfect cloaking for wave incident from one direction but acting as a perfect reflector for wave from the counter direction. The proposed design shows a high promise of applications in military, as protecting the own information to be detected but efficiently grabbing the information from the “enemy” side

    Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length

    Full text link
    We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled 85^{85}Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidium atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able to produce all four Bell states. These subnatural-linewidth photon pairs with polarization entanglement are ideal quantum information carriers for connecting remote atomic quantum nodes via efficient light-matter interaction in a photon-atom quantum network.Comment: Title changed, published version, 5 pages + 3 pages Supplemental Materia

    Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode

    Get PDF
    Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices

    Box-counting measure of metric spaces

    Full text link
    In this paper, we introduce a new notion called the \emph{box-counting measure} of a metric space. We show that for a doubling metric space, an Ahlfors regular measure is always a box-counting measure; consequently, if EE is a self-similar set satisfying the open set condition, then the Hausdorff measure restricted to EE is a box-counting measure. We show two classes of self-affine sets, the generalized Lalley-Gatzouras type self-affine sponges and Bara\'nski carpets, always admit box-counting measures; this also provides a very simple method to calculate the box-dimension of these fractals. Moreover, among others, we show that if two doubling metric spaces admit box-counting measures, then the multi-fractal spectra of the box-counting measures coincide provided the two spaces are Lipschitz equivalent
    corecore